

Testing and Induction

Koen Claessen Chalmers University of Technology Gothenburg, Sweden

Proof-based Testing

contrapositive testing, inductive testing, and co-inductive testing

Oracle

• Simple

- Simpler than the implementation
- (environment)
- Practically runnable
 - May need to run many tests
- Oracle should be "complete"
 - For any faulty implementation, there should exist inputs that trigger the oracle to say "no"

Shortest Path Algorithms

(solve :: Problem -> Maybe Solution)

Problem

- The oracle needs to know what the shortest path is
- We can be **simple**, but it is **too slow**
 - Not practical when testing
 - (Non-termination!)
- We can be **fast**, but it is **too complex**
 - We may not trust our test results

Property-based Testing

(in the style of QuickCheck)

Sound - If an answer is produced, it should be an actual solution

Complete - If no answer is produced, there indeed was no actual solution

Optimal - If an answer is produced, there is no actual solution that is better

Sound - If an answer is produced, it should be an actual solution

(easy to test)

Complete - If no answer is produced, there indeed was no actual solution

logically equivalent

Complete' - If there is a solution, some answer will be produced

testable

ForAll x . A(x) ==> B(x)

ForAll x in "A". B(x)

ForAll mp,a,b . hasPath mp a b ==> isJust (shortest mp a b)

ForAll (mp,a,b) in **hasPathMap**. isJust (shortest mp a b)

Optimal - If an answer is produced, there is no actual solution that is better

logically equivalent

Optimal' - If there is a solution, then no worse answer will be produced

testable ?

Contrapositive testing

- Change your viewpoint
 - From: Stimuli / System Under Test / Oracle
 - To: Logical implication
- And take the contrapositive view to get new inspiration
- Sometimes, you have a choice! (How to make it?)

Contrapositive Testing

Shortest Distance Algorithms

```
type Map
type Point
data Distance = Inf | Fin Int
```

distance :: Map -> Point -> Point -> Distance

Sound - If an answer is produced, it should be an actual solution

Complete - If no answer is produced, there indeed was no actual solution

Optimal - If an answer is produced, there is no actual solution that is better

ForAll mp,a,a .
 distance mp a a == Fin 0

Inductive Testing

- Correctness: by induction
 - soundness: induction over ack
 - completeness: induction over function
- Induction principle
 - \circ choose this for enabling testing
 - independent of implementation (unlike proving)
- Induction vs. recursion in implementation
 - too slow to use directly (even non-terminating)
 - Plotkin induction

What happens to fault distribution?

Testing SAT-solvers

Testing SAT-solvers

- If model and proof are generated
 - Direct soundness
 - Direct completeness
- If only model is generated when found
 - Direct soundness
 - Contrapositive testing for completeness
- If only yes/no answer
 - Inductive testing
 - Base case: no variables
 - Step case: branch on a variable

Testing Sorting

Testing sorting functions

- Write down the simplest sorting function you can think of
 - You trust this code
- Show that the function you want to test has the same behavior
 - How?

Testing FFT implementations

Testing FFT

• Base case

• vectors [0,...,0,1,0,...,0]

- Step cases
 - \circ a * fft v = fft (a*v)
 - $\circ \quad \text{fft } v + \text{fft } w = \text{fft } (v + w)$
- Using exact arithmetic
 - Implementation is still fast
 - Specification is extremely slow

Testing Model Checkers for Safety Properties

False: The system is **not safe**; often produces a **trace**

check :: State -> Circuit -> Bool

True: The system is **safe**; (produces nothing)

step :: State -> System -> Input -> (Bool, State)

ForAll s, C . check s C ==> safe(s, C)

cannot simply compute

ForAll s, C .
 check(s, C) ==>
 ForAll inp .
 let (ok, s') = step(s, C, inp) in
 ok && check(s', C)

Correctness

- Safety is defined as *greatest fixpoint*
- Most natural is to use *coinduction*

 $a \leq F(a)$

$a \leq gfp x . F(x)$

- Can also use induction (over the length of the shortest missed countertrace)
- Efficiency
 - Model checker is called twice for each test
Inductive Testing

- Break away from the stimuli / system under test / oracle view
- Look at the logical meaning of the property
- Use proof techniques to "break up" into smaller properties
 - Together, they imply the original property
 - They may be easier to test
 - The system may be run several times
- What happens to the distribution of faulty test cases?

More...

• More examples

- Testing compilers / interpreters
- Theorem provers for decidable logics
- Theorem provers for semi-decidable logics
- Model checkers for liveness properties
- Unification algorithm
- Distributed systems

0 ...

Developing "testing logic"

- Logical equivalence
- Testing non-equivalence
- Cost of testing
- Predict which testing ways are most effective

Automating Induction

functions are *total* and *terminating*

```
ASSUME: rev (rev as) = as
PROVE: rev (rev (a:as)) = a:as
<=> rev (rev as ++ [a]) = a:as
<stuck>
```

	rev (xs ++ ys) =?= rev ys ++ rev xs
ASSUME	: rev (as ++ ys) = rev ys ++ rev as
PROVE:	rev ((a:as)++ys) = rev ys ++ rev (a:as)
<=>	rev (a:(as++ys)) = rev ys ++ (rev as++[a])
<=>	rev (as++ys)++[a] = rev ys++(rev as++[a])
<=>	<pre>(rev ys++rev as)++[a] = rev ys++(rev as++[a])</pre>
<=>	<pre>rev ys++(rev as++[a]) = rev ys++(rev as++[a])</pre>

$$xs ++ (ys ++ zs) = ?= (xs ++ ys) ++ zs$$

Activities

- Choose which variable(s) to do induction on
- Choose what kind of induction
- Equational reasoning
- Inventing new lemmas

rewrite until stuck; then speculate

ASSUME: rev (rev as) = as
PROVE: rev (rev (a:as)) = a:as
<=> rev (rev as ++ [a]) = a:as
<=> rev (rev as ++ [a]) = a:rev(rev as)
rev (xs ++ [a]) = a:rev xs

existing lemma speculation works *top-down...*

...starting from what you want to prove, arrive at something that is needed...

...hopefully ending up with things that are provable.

...hopefully helping in the proof of the properties!

....oking at your program, it calculates and summarizes all equational lemmas that hold...

HipSpec works *bottom-up...*

QuickSpec

```
import QuickSpec
main = quickSpec [
    con "0" (0 :: Int),
    con "1" (1 :: Int),
    con "+" ((+) :: Int -> Int -> Int),
    con "*" ((*) :: Int -> Int -> Int)]
```

```
import QuickSpec
```

```
main = quickSpec [
    con "reverse" (reverse :: [A] -> [A]),
    con "++" ((++) :: [A] -> [A] -> [A]),
    con "[]" ([] :: [A]),
    con "map" (map :: (A -> B) -> [A] -> [B]),
    con "length" (length :: [A] -> Int),
    con "concat" (concat :: [[A]] -> [A]),
```

-- Add some numeric functions to get more laws about length.
arith (Proxy :: Proxy Int)]

```
== Laws ==
 1. concat [] = []
 2. length [] = 0
 3. reverse [] = []
 4. xs ++ [] = xs
 5. [] ++ xs = xs
 6. length (reverse xs) = length xs
 7. map f [] = []
 8. reverse (reverse xs) = xs
 9. length (xs ++ ys) = length (ys ++ xs)
10. length (map f xs) = length xs
11. reverse (map f xs) = map f (reverse xs)
 12. length (concat (reverse xss)) = length (concat xss)
 13. concat (map reverse xss) = reverse (concat (reverse xss))
 14. map ((++) []) xss = xss
15. (xs ++ ys) ++ zs = xs ++ (ys ++ zs)
16. length xs + length ys = length (xs ++ ys)
17. concat xss ++ concat yss = concat (xss ++ yss)
18. reverse xs ++ reverse ys = reverse (ys ++ xs)
 19. concat (map (map f) xss) = map f (concat xss)
20. map reverse (map reverse xss) = xss
21. map (map f) (map reverse xss) = map reverse (map (map f) xss)
 22. map f xs ++ map f ys = map f (xs ++ ys)
23. length (concat (map f (concat (reverse xss)))) = length (concat (m
24. length (concat (map ((++) (reverse xs)) xss)) = length (concat (ma
25. map ((++) xs) (map ((++) ys) xss) = map ((++) (xs ++ ys)) xss
```

== Laws ==

1. concat [] = [] 2. length [] = 03. reverse [] = [] 4. xs ++ [] = xs5. [] ++ xs = xs6. length (reverse xs) = length xs7. map f [] = [] 8. reverse (reverse xs) = xs9. length (xs ++ ys) = length (ys ++ xs) 10. length (map f xs) = length xs 11. reverse (map f xs) = map f (reverse xs) 12. length (concat (reverse xss)) = length (α 13. concat (map reverse xss) = reverse (conca 14. map ((++) []) xss = xss15. (xs ++ ys) ++ zs = xs ++ (ys ++ zs)16. length xs + length ys = length (xs ++ ys) 17 concat yes is concat yes - concat (yes)

9. length (xs ++ ys) = length (ys ++ xs)10. length (map f xs) = length xs 11. reverse (map f xs) = map f (reverse xs) 12. length (concat (reverse xss)) = length (α 13. concat (map reverse xss) = reverse (conca 14. map ((++) []) xss = xss 15. (xs ++ ys) ++ zs = xs ++ (ys ++ zs)16. length xs + length ys = length (xs ++ ys) 17. concat xss ++ concat yss = concat (xss ++ 18. reverse xs ++ reverse ys = reverse (ys ++19. concat (map (map f) xss) = map f (concat 20. map reverse (map reverse xss) = xss map (map f) (map reverse xss) = map rever 21. 22. map f xs ++ map f ys = map f (xs ++ ys) 23. length (concat (map f (concat (reverse xs 24. length (concat (map ((++) (reverse xs)) > 25. map ((++) xs) (map ((++) ys) xss) = map

Hip (Haskell Inductive Prover)

QuickSpec - how does it work?

enumerate terms

XS rev xs rev [] XS++XS xs++ys xs++[] []++xs rev (rev xs)

up to certain size

xs [] (xs: [3]) rev xs (xs: [4,1])

xs [] (xs: [3]) rev xs (xs: [4,1])

QuickSpec - filtering

Showcase

rev	(drop	i	xs)	=	take	(len	xs	_	i)	(rev	xs)
rev	(take	i	xs)	=	drop	(len	XS	-	i)	(rev	xs)

No	Conjecture							
1	len (drop x xs)	= len xs-x						
2	len xs	= len (rev xs)						
3	XS	<pre>= take x xs++drop x xs</pre>						
4	rev (ys++xs)	= rev xs++rev ys						
5	XS	<pre>= take (len xs) (xs++ys)</pre>						

Extensions

- conditional properties
 - simulate with functions
 - simulate with types
 - small set of predetermined conditions
User Interaction

- add more functions
 - more properties
 - simulate conditional properties
- limit the number of functions to study
 - scalability

Semantics

- everything is total, and terminates
 - simplest
- everything terminates, not necessarily total
 - Isabelle/HOL semantics
 - special change to QuickSpec required
- no totality assumptions whatsoever
 - full domain theory with ___
 - fixpoint induction

Summing Up

- Proof techniques can help testing
 - contrapositive testing
 - inductive testing
- Testing can help proving
 - QuickSpec
 - Hip

