
type 
families



Koen Claessen
Chalmers University of Technology

Gothenburg, Sweden

Testing and Induction



testing induction

finding 
bugs

showing 
absence 
of bugs



Proof-based Testing
contrapositive testing,

inductive testing,
and co-inductive testing

 



System Under 
Test

test 
cases

Oracle

ok?



Oracle

● Simple
○ Simpler than the implementation
○ (environment)

● Practically runnable
○ May need to run many tests

● Oracle should be “complete”
○ For any faulty implementation, there should exist 

inputs that trigger the oracle to say “no”



Shortest Path Algorithms



type Map
type Point
type Path

shortest :: Map -> Point -> Point -> Maybe Path

( solve :: Problem -> Maybe Solution )

how to test 
using an oracle?



● The oracle needs to know what the shortest 
path is

● We can be simple, but it is too slow
○ Not practical when testing
○ (Non-termination!)

● We can be fast, but it is too complex
○ We may not trust our test results

Problem



Property-based Testing

(in the style of QuickCheck)



Sound - If an answer is produced, it should 
be an actual solution

Complete - If no answer is produced, there 
indeed was no actual solution

Optimal - If an answer is produced, there is 
no actual solution that is better



Sound - If an answer is produced, it should 
be an actual solution

(easy to test)



Complete - If no answer is produced, there 
indeed was no actual solution

Complete’ - If there is a solution, some 
answer will be produced

logically equivalent

testable



ForAll x .   A(x) ==> B(x)

ForAll x in “A”.   B(x)



ForAll mp,a,b .
    hasPath mp a b ==>
        isJust (shortest mp a b)

ForAll (mp,a,b) in hasPathMap .
        isJust (shortest mp a b)



logically equivalent

testable

Optimal - If an answer is produced, there is 
no actual solution that is better

Optimal’ - If there is a solution, then no 
worse answer will be produced

?



Contrapositive testing

● Change your viewpoint

○ From: Stimuli / System Under Test / Oracle

○ To: Logical implication

● And take the contrapositive view to get new 
inspiration

● Sometimes, you have a choice! (How to 
make it?)



Contrapositive Testing

?



Shortest Distance 
Algorithms



type Map
type Point
data Distance = Inf | Fin Int

distance :: Map -> Point -> Point -> Distance



Sound - If an answer is produced, it should 
be an actual solution

Complete - If no answer is produced, there 
indeed was no actual solution

Optimal - If an answer is produced, there is 
no actual solution that is better



ForAll mp,a,a .
  distance mp a a == Fin 0

ForAll mp,a,b .
  distance mp a b ==
    minimum [ distance mp a’ b + d
            | (a’,d) <- neighbors mp a
            ]



● Correctness: by induction
○ soundness: induction over actual distance
○ completeness: induction over function answer

● Induction principle
○ choose this for enabling testing
○ independent of implementation (unlike proving)

● Induction vs. recursion in implementation
○ too slow to use directly (even non-terminating)
○ Plotkin induction

Inductive Testing
What happens 

to fault 
distribution?



Testing SAT-solvers



● If model and proof are generated
○ Direct soundness
○ Direct completeness

● If only model is generated when found
○ Direct soundness
○ Contrapositive testing for completeness

● If only yes/no answer
○ Inductive testing
○ Base case: no variables
○ Step case: branch on a variable

Testing SAT-solvers



Testing Sorting



● Write down the simplest sorting function you 
can think of
○ You trust this code

● Show that the function you want to test has 
the same behavior
○ How?

Testing sorting functions



Testing FFT 
implementations



● Base case
○ vectors [0,..,0,1,0,..,0]

● Step cases
○ a * fft v = fft (a*v)
○ fft v + fft w = fft (v + w)

Testing FFT

● Using exact arithmetic
○ Implementation is still fast
○ Specification is extremely slow



Testing Model Checkers
for Safety Properties



System

bad

s s’

s0



check :: State -> Circuit -> Bool

False: The system is 
not safe; often 

produces a trace

True: The system is safe; 
(produces nothing)



safe(s, C) =
     ForAll inp .
         let (ok, s’) = step s C inp in
             ok && safe(s’, C)

step :: State -> System -> Input -> (Bool, State)

greatest fixpoint
cannot simply 

compute



ForAll s, C .
    check s C ==>
        safe(s, C)

cannot simply 
compute



ForAll s, C .
    check(s, C) ==>
        ForAll inp .
            let (ok, s’) = step(s, C, inp) in
                ok && check(s’, C)



a ≤ F(a)

a ≤ gfp x . F(x)

● Correctness
○ Safety is defined as greatest fixpoint
○ Most natural is to use coinduction

○ Can also use induction (over the length of the 
shortest missed countertrace)

● Efficiency
○ Model checker is called twice for each test



● Break away from the stimuli / system under 
test / oracle view

● Look at the logical meaning of the property
● Use proof techniques to “break up” into 

smaller properties
○ Together, they imply the original property
○ They may be easier to test
○ The system may be run several times

● What happens to the distribution of faulty 
test cases?

Inductive Testing



More...
● More examples

○ Testing compilers / interpreters
○ Theorem provers for decidable logics
○ Theorem provers for semi-decidable logics
○ Model checkers for liveness properties
○ Unification algorithm
○ Distributed systems
○ …

● Developing “testing logic”
○ Logical equivalence
○ Testing non-equivalence
○ Cost of testing
○ Predict which testing ways are most effective





testing induction

finding 
bugs

showing 
absence 
of bugs



Automating Induction



rev :: [a] -> [a]
rev []     = []
rev (x:xs) = rev xs ++ [x]

rev (rev xs) =?= xs

functions are total 
and terminating



rev :: [a] -> [a]
rev []     = []
rev (x:xs) = rev xs ++ [x]

BASE: rev (rev []) = []

STEP: rev (rev as) = as  ==>
      rev (rev (a:as)) = a:as



rev :: [a] -> [a]
rev []     = []
rev (x:xs) = rev xs ++ [x]

ASSUME: rev (rev as) = as

 PROVE: rev (rev (a:as)) = a:as

   <=>  rev (rev as ++ [a]) = a:as

        <stuck>



rev :: [a] -> [a]
rev []     = []
rev (x:xs) = rev xs ++ [x]

BASE: rev ([] ++ ys) = rev ys ++ rev []

 <=>  rev ys = rev ys ++ []

 <=>  rev ys = rev ys

rev (xs ++ ys) =?= rev ys ++ rev xs



rev :: [a] -> [a]
rev []     = []
rev (x:xs) = rev xs ++ [x]

ASSUME: rev (as ++ ys) = rev ys ++ rev as

PROVE: rev ((a:as)++ys) = rev ys ++ rev (a:as)

  <=>  rev (a:(as++ys)) = rev ys ++ (rev as++[a])

  <=>  rev (as++ys)++[a] = rev ys++(rev as++[a])

  <=>  (rev ys++rev as)++[a] = rev ys++(rev as++[a])

  <=>  rev ys++(rev as++[a]) = rev ys++(rev as++[a])

rev (xs ++ ys) =?= rev ys ++ rev xs



rev :: [a] -> [a]
rev []     = []
rev (x:xs) = rev xs ++ [x]

ASSUME: rev (rev as) = as

 PROVE: rev (rev (a:as)) = a:as

   <=>  rev (rev as ++ [a]) = a:as

   <=>  rev [a] ++ rev (rev as) = a:as

   <=>  a : rev (rev as) = a : as

   <=>  a : as = a : as



rev (xs ++ ys) =?= rev ys ++ rev xs

xs ++ [] =?= xs

xs ++ (ys ++ zs) =?= (xs ++ ys) ++ zs



Activities

● Choose which variable(s) to do induction on

● Choose what kind of induction

● Equational reasoning

● Inventing new lemmas

✔
�

✖
�

✔
�✔

�



ACL2

Zenorippling +
proof planning

circular
proofs

powerful
induction principle

structural 
induction

from 
scratch

rewrite until stuck; 
then speculate

interactive 
prover

no new 
lemmas

fully 
automated

powerful
library



rev :: [a] -> [a]
rev []     = []
rev (x:xs) = rev xs ++ [x]

ASSUME: rev (rev as) = as

 PROVE: rev (rev (a:as)) = a:as

   <=>  rev (rev as ++ [a]) = a:as

        <stuck>

rewrite until stuck; 
then speculate

<=>  rev (rev as ++ [a]) = a:rev(rev as)

     <stuck>rev (xs ++ [a]) =?= a:rev xs



existing lemma speculation 
works top-down...

...starting from what you 
want to prove, arrive at 

something that is needed...

...hopefully ending up with 
things that are provable.



...hopefully helping in the 
proof of the properties!

...looking at your program, it 
calculates and summarizes all 
equational lemmas that hold...

HipSpec works bottom-up...

how?



QuickSpec





only 
tested











QuickSpec

module List where

length :: [a] -> Nat
length []     = Z
length (_:xs) = S (length xs)

(++) :: [a] -> [a] -> [a]
(x:xs) ++ ys = x:(xs ++ ys)
[]     ++ ys = ys

map :: (a -> b) -> [a] -> [b]
map f (x:xs) = f x:map f xs
map f []     = []

filter :: (a -> Bool) -> [a] -> [a]
filter p (x:xs) | p x       = x:filter p xs
                | otherwise = filter p xs
filter p [] = []

1. filter x (filter y xs) == filter y (filter x xs)
2. length (map x xs) == length xs
3. filter x (filter x xs) == filter x xs
4. ...

prop_Aap = …

prop_Koe = …

prop_Zebra = 
    ...

Hip

1. filter x (filter y xs) ==
      filter y (filter x xs)
2. length (map x xs) ==
      length xs
3. filter x (filter x xs) == 
      filter x xs
4. prop_Aap
5. prop_Koe
6. prop_Zebra

✔

testing

proving



Hip (Haskell Inductive Prover)

module List where

length :: [a] -> Nat
length []     = Z
length (_:xs) = S (length xs)

(++) :: [a] -> [a] -> [a]
(x:xs) ++ ys = x:(xs ++ ys)
[]     ++ ys = ys

map :: (a -> b) -> [a] -> [b]
map f (x:xs) = f x:map f xs
map f []     = []

filter :: (a -> Bool) -> [a] -> [a]
filter p (x:xs) | p x       = x:filter p xs
                | otherwise = filter p xs
filter p [] = []

FOL

1. filter x (filter y xs) == filter y (filter x xs)
2. length (map x xs) == length xs
3. filter x (filter x xs) == filter x xs
4. ...

choose 
induction 

variable(s)

Theorem
Prover

yes / timeout



QuickSpec - how does it work?

xs
[]
rev xs
rev []
xs++xs
xs++ys
xs++[]
[]++xs
rev (rev xs)
...

enumerate 
terms

up to certain 
size



QuickSpec - algorithm

xs



QuickSpec - algorithm

xs
[]



QuickSpec - algorithm

xs
[]   (xs: [3]) rev xs



QuickSpec - algorithm

xs
[]          (xs: [3])
rev xs   (xs: [4,1])

rev []

[] = rev []



QuickSpec - algorithm

xs
[]          (xs: [3])
rev xs   (xs: [4,1])

xs++[]

xs = xs++[]



QuickSpec - filtering

xs
[]          (xs: [3])
rev xs   (xs: [4,1])
...

rev xs = rev (xs++[])
quickly check if 

already provable

before testing



Proving Loop

Lemma
queue

Proved
Lemmas

Proof 
attempt

incremental



Showcase



Extensions

● conditional properties
○ simulate with functions

○ simulate with types

○ small set of predetermined conditions



User Interaction

● add more functions
○ more properties

○ simulate conditional properties

● limit the number of functions to study
○ scalability



Semantics

● everything is total, and terminates
○ simplest

● everything terminates, not necessarily total
○ Isabelle/HOL semantics

○ special change to QuickSpec required

● no totality assumptions whatsoever
○ full domain theory with _|_

○ fixpoint induction



Summing Up

● Proof techniques can help testing
○ contrapositive testing

○ inductive testing

● Testing can help proving
○ QuickSpec

○ Hip




