
Prof. Dr. Farhad Mehta

Department of Computer Science

INTRODUCTION

FARHAD MEHTA

Who am I?

2

• First name: Farhad

• Last name: Mehta

• Born: Mumbai, India

• Grew up in Dubai

• Lived in Zurich, Delhi, Munich, Paris

• In Switzerland since 2004

• Married, 2 children

Background

5

Education Dr. Sc. Computer Science (ETH Zurich 2008)
M.Sc. Informatik (TU Munich 2004)
B.Tech Computer Science & Engineering (IIT Delhi 2001)

Experience 1997
2000
2001

2002 - 2004
2004 - 2008
2008 - 2014
2013 - 2014

Since Feb 2015

Allied Enterprises, Dubai (IT Support)
DRDO, Bangalore (Research: IT Security)
INRIA, Paris (Research: Linguistics & Compilers)
TU Munich (Teaching & Research: Logic & Software Engg.)
ETH Zurich (Teaching & Research: Formal Methods & Software Engg.)
Systransis AG (Development, Management, Marketing, ...)
Part-time: Teacher at the Bildungszentrum Zürichsee (BZZ)

Professor for Computer Science at the OST

Interests Software Engineering, Programming Languages, Functional Programming, Algorithms,
Safety-critical Systems, Formal Methods, Logic.

But also: Electronics, Usability, Didactics.

I currently teach the following OST courses:
• SE Practices 1
• SE Project
• Functional Programming
• MSE EVA “Programming Languages”
• MSE Module “Advanced Prog. Paradigms”
• MAS SE Module “Functional Programming”
• CAS SW Testing Module “Unit Testing”

I supervise:
• Semester Projects
• Bachelor Thesis Projects
• Master Semester Projects
• Master Thesis Projects

I have taught the following courses in the past:
• Software Engineering 1
• Software Engineering 2
• Engineering Project
• Programming Languages & Formal Methods
• Distributed Systems
• Compiler design
• Formal Methods and Functional Prog. (ETHZ)
• Informatik für nicht-Informatiker (ETHZ)
• Logik (ETHZ)
• …

Prof. Dr. Farhad Mehta

Department of Computer Science

FUNCTIONAL PROGRAMMING

AND PROOF

Reasoning about Programs
Motivation

2

Till now, we have been able to:

• Formulate some interesting properties

• Test them using property-based testing (Quickcheck)

But testing can only show the presence of faults, never their absence.

How we can prove that our programs always satisfy some given properties?

We will now see how this is possible using techniques that you are already
familiar with from high-school math!

Reasoning about Programs
Why is this important?

3

• Our luck at producing programs that work will run out J

• Formal Proof gives us the security to program in a way that is

• Scalably Reliable

• Scalably Efficient

• It forces us to keep our programs simple and elegant

• It makes it even possible to ‘derive’ correct programs from their properties

• There is a deep connection between proofs and programs:
"PAT" Interpretation: Propositions As Types, Proofs As Terms

Reasoning about Programs
Why is this relevant to Functional Programming?

4

• Functional programs are particularly amenable to sound and simple reasoning

• This is their superpower, and is what makes them easier to work with for
humans and machines

• Functional Programming and Formal Proof share a very rich legacy

• Remember: ML was originally the “Meta Language” for a theorem prover

• Functional Programming is often the gateway drug to other formal methods

Reasoning about Programs
Lesson Goals

5

All participants are able to

• State relevant correctness properties for functional programs (done)

• Provide counter-examples of program properties that do not hold (done)

• Perform formal proofs of program properties that hold using equational
rewriting and induction

Proof Techniques
Equational Reasoning

6

We have already seen this many times in math, and since the start of this course.

sum [1..5]
== { applying [..] }
sum [1,2,3,4,5]

== { applying sum }
1+2+3+4+5

== { applying + }
15

∀x.qsort [x] == [x]

qsort [x]
== {++applying qsort }
qsort [] ++ [x] ++ qsort []

== { applying qsort }
[] ++ [x] ++ []

== { applying ++ }
[x]

totalWordCount :: [String] -> Int

totalWordCount =

\strs -> foldr (+) 0 (map length (map words strs))

== {Definition of (.), η conversion, map f . map g == map (f . g) }

foldr (+) 0 . map (length . words)

== {applying “foldr f v . map g = foldr (f.g) v” }

foldr ((+) . length . words) 0

This is and will remain the main workhorse for our proofs.

Note: Mathematitians are often cavalier and inconsiderate, and often overestimate their
readers’ patience. In this course we will be extra careful and explicit. Each step of a proof
may only use a definition, or a property that we have already proven. The justification for
each step needs to reflect this.

Proof Techniques
Equational Reasoning – A note on the form of proofs used in the text book

7

The textbook uses the ‘=’ symbol
in between lines of a derivation:

 1 6 . 4 I n d u c t i o n o n n u m b e r s 233

 S u c c (a d d n Z e r o)

 “ t induction hypothesis u

 S u c c n



 Because proofs by induction normally involve more than one calculation, it is

 useful to explicitly indicate the end of the proof. For this purpose, we use a

 square box  in the right-hand margin, as illustrated above.

 As another example, let us show that addition of natural numbers is associa-

 tive. That is, a d d x (a d d y z) a d d (a d d x y) z“ for all x y, and z. There

 are three variables, so which should induction be performed over? Note that the

 a d d function is defined by pattern matching on its first argument, so it is natural

 to try induction on x, which appears twice as the first argument to a d d in the

 associativity equation, whereas y only appears once as such and z never. Using

 induction on x, the proof of the associativity of a d d proceeds as follows.

 Base case:

 a d d Z e r o (a d d y z)

 “ t applying the outer a d d u

 a d d y z

 “ t unapplying a d d u

 a d d (a d d Z e r o y) z

 Inductive case:

 a d d (S u c c x) (a d d y z)

 “ t applying the outer a d d u

 S u c c (a d d x (a d d y z))

 “ t induction hypothesis u

 S u c c (a d d (a d d x y) z)

 “ t unapplying the outer a d d u

 a d d (S u c c (a d d x y) z)

 “ t unapplying the inner a d d u

 a d d (a d d (S u c c x) y) z)



 Note that both cases in the proof start by applying definitions, and conclude by

 unapplying definitions. This pattern is typical in proofs by induction, but the

 latter part may seem somewhat mysterious at first sight. In particular, knowing

 which definitions to unapply seems to require a degree of foresight. In prac-

 tice, however, if one becomes stuck at a certain point during such a calculation,

 progress can often be made by focusing on the desired end result and trying to

 work backwards to the point where one became stuck.

 For example, after applying the induction hypothesis in the inductive case

 above to obtain S u c c (a d d (a d d x y) z), it may not be clear how to proceed,

We will use the ‘==’ symbol instead to be
more consistent with the notation of
equality used in Haskell, since ‘=’ in Haskell
is used for definitions. We will also be more
explicit on which properties we use in each
step of the proof:

add Zero m == m (addZero)

It is often easier to state and simplify both sides
of the equality that we are trying to prove in each
step, thereby avoiding awkward ‘unapplying’
steps. We will also underline the sub terms that
get rewritten at each step for more clarity:

add Zero (add y z)
== { applying addZero }
add y z

== { unapplying addZero }
add (add Zero y) z

 232 R e a s o n i n g a b o u t p r o g r a m s

 Now suppose we want to prove that some property, p say, holds for all (finite)

 natural numbers. Then the principle of induction states that it is sufficient to

 show that p holds for Z e r o, called the base case, and that p is preserved by S u c c,

 called the inductive case. More precisely, in the inductive case one is required to

 show that if the property p holds for any natural number n, called the induction

 hypothesis , then it also holds for S u c c n.

 Why is induction sufficient to show that p holds for all natural numbers? For

 example, how does it then follow that p holds for S u c c (S u c c Z e r o). Starting

 from the base case that p holds for Z e r o, we can apply the inductive case once

 to conclude that p holds for S u c c Z e r o, by taking , and then apply then “ Z e r o

 inductive case a second time to conclude that p holds for S u c c (S u c c Z e r o),

 by taking n “ S u c c Z e r o. In a similar manner, it can be established that the

 property p holds for any natural number.

 It is useful to draw an analogy with the domino effect. Suppose there is a

 line of dominoes standing on end and you know that the first domino will fall,

 and that whenever a domino falls then its next neighbour will also fall. Then

 it is clear that all the dominoes will fall, by applying the first fact to get the

 process started, and repeatedly applying the second to keep it going. The same

 pattern of reasoning occurs with induction: we first verify the required property

 for Z e r o (the first domino falls), then that the property is preserved by S u c c

 (if any domino falls, then so will its neighbour), and conclude that the property

 holds for all natural numbers (all dominoes fall).

 As a concrete example, consider the definition of a recursive function that

 takes two natural numbers and adds them together:

 a d d : : N a t - > N a t - > N a t

 a d d Z e r o m = m

 a d d (S u c c n) m = S u c c (a d d n m)

 From the first equation, it is immediate that a d d Z e r o m “ m holds for any

 natural number m. Now let us show that the dual property, a d d n Z e r o “ n,

 which we abbreviate by p, also holds for all natural numbers n. We proceed by

 induction on n. The base case, showing that p Z e r o holds, amounts to showing

 that a d d Z e r o Z e r o Z e r o“ , which is immediate:

 a d d Z e r o Z e r o

 “ t applying a d d u

Z e r o

 For the inductive case, we must show that if p holds for any natural number n,

 then p (S u c c n) also holds. That is, using the induction hypothesis a d d n Z e r o

 “ “n as an assumption, we must show that the equation a d d (S u c c n) Z e r o

 S u c c n holds, which can be verified as follows:

 a d d (S u c c n) Z e r o

 “ t applying a d d u
The example used on this slide is the proof of add Zero (add y z) == add (add Zero y) z
using the definiton of add on page 233 of “Programming in Haskell 2ed” by Graham Hutton

add Zero (add y z) == add (add Zero y) z
== { applying addZero }
add y z == add (add Zero y) z

== { applying addZero }
add y z == add y z

== { (==)refl }
True

Note: All undefined variables that occur in properties to be assumed or proven are by convention assumed to be
universally qualified. For instance the statement add Zero m == m of (addZero) is actually ∀m.(add Zero m == m).

Deviation from

Textbook

(Programming in

Haskell 2ed)

Proof Techniques
Mathematical Induction

8

We additionally need induction to prove properties about
recursively defined data structures.

This is the same principle of induction that you have learnt
in high school and has been used since about 1000 AD.

Revision Exercise: Proove that the sum of the first n natural numbers is n(n+1)/2 using the technique
of mathematical induction and equational reasoning as you have learnt in high school.

Notice: The idea behind induction is the same as the one behind recursion.
One could even think that a proof by induction is nothing more than a recursive
function that returns a proof! For any finite input, one could always “unroll” the
induction to construct a proof without it, just like we can do for computation
using recursion!

Proof Techniques
Mathematical Induction

9

Revision Exercise: Proove that the sum of the first n natural numbers is
n(n+1)/2 using the technique of mathematical induction and equational
reasoning as you have learnt in high school.

https://en.wikipedia.org/wiki/Mathematical_induction

https://en.wikipedia.org/wiki/Mathematical_induction

Proof Techniques
Mathematical Induction

10

The induction principle (a.k.a. induction rule) for natural numbers is typically expressed in term of the following
logical inference rule (a.k.a. proof rule), where P :: Nat → Bool is any property that we want to prove.

P 0 ∀n. (P n ⇒ P (n+1))
∀n. P n

Base Case Induction Hypothesis

Main goal to
be proven

Induction Step

Inductive Case

Subgoals that
need to be proven
in order to prove

the main goal

In the case of the
revision exercise: P n = ((0+1+2+…+n == n(n+1)/2)

Proof Techniques
Structural Induction - Lists

11

Natural numbers are not the only recursive structures that allow proof
by induction. Every recusively defined structure admits an induction
principle. This more general form of induction is sometimes known as
structural induction.

data [a] = [] | a:[a]

where P xs :: [a] -> Bool is any property on lists that we want to prove.

P [] ∀x xs.(P xs ⇒ P (x:xs))
∀xs. P xs

Base Case Induction Hypothesis

Main goal to
be proven

Induction Step

Inductive Case
Subgoals that

need to be proven
in order to prove

the main goal

For instance, here is the induction
principle for lists in Haskell:

Notice: I have changed the font used on this slide to
reflect that we are now no more in the realm of
mathematics, but proving properties about Haskell
programs.

Notice: I am mixing Haskell and mathematical syntax
here (there is no ⇒ or ∀ in Haskell). This is definitely not
kosher, but since I have no way to reason about Haskell
programs within Haskell, I have no other choice. There
are extensions to functional programming (for instance,
Higher-Order Logic (HOL) & dependently typed
languages such as Agda, Coq and Idris) that combine
programming and proving. But since we are currently only
interested in proofs on paper, we will let this slide and
appeal to our (often imprecise) notion of proof from
standard mathematics.

Note: “∀x y. P” is a short form for “∀x.(∀y.P)”

Proof Techniques
Structural Induction - Lists

12

Exercise:

Formally state and prove that the following property holds for all lists in Haskell:

“Concatenating two lists results in a list of length equal to the sum of the concatenated lists”

You are only allowed use the following properties, as well as the fact that lists are recursively defined data types in your proof:

length [] == 0 (length[])
∀x xs. length (x:xs) == 1 + length xs (length(:))
∀xs. [] ++ xs == xs ((++)[])
∀x xs ys. (x:xs) ++ ys == x:(xs++ys) ((++)(:))
∀n. 0 + n == n ((+)0)
∀a b c. (a + b) + c == a + (b + c) ((+)assoc)
∀x. (x == x) == True ((==)refl)

Hint: Start with a proof by induction on the first argument of (++), since (++) is defined using recursion on its first argument.

P xs = ∀ys. (length (xs ++ ys) == length xs + length ys)

P [] ∀x xs.(P xs ⇒ P (x:xs))

∀xs. P xs

Proof Techniques
Structural Induction - Lists

13

Exercise: Formally state and prove that the following property holds for all lists in Haskell:
“Concatenating two lists results in a list of length equal to the sum of the concatenated lists”

Solution:

Required to Prove (RTP): ∀xs ys. (length (xs ++ ys) == length xs + length ys)

Proof. Proceed by induction on xs: Let P xs = ∀ys. (length (xs ++ ys) == length xs + length ys) and apply the
induction rule for lists on P xs.

1. Base Case. RTP: P []

P []
== {applying definiton of P, choosing a fixed but arbitrary ys}
length ([] ++ ys) == length [] + length ys

== {applying length[]}
length ([] ++ ys) == 0 + length ys

== {applying (++)[]}
length ys == 0 + length ys

== {applying (+)0}
length ys == length ys

== {applying (==)refl}
True

P [] ∀x xs.(P xs ⇒ P (x:xs))

∀xs. P xs

length [] == 0. (length[])
∀x xs. length (x:xs) == 1 + length xs. (length(:))
∀xs. [] ++ xs == xs ((++)[])
∀x xs ys. (x:xs) ++ ys == x:(xs++ys). ((++)(:))
∀n. 0 + n == n ((+)0)
∀a b c. (a + b) + c == a + (b + c) ((+)assoc)
∀x. (x == x) == True. ((==)refl)

Proof Techniques
Structural Induction - Lists

14

P [] ∀x xs.(P xs ⇒ P (x:xs))

∀xs. P xs

Solution (continued):

2. Induction Step. RTP: ∀x xs.(P xs ⇒ P (x:xs))

Choose a fixed but arbitrary x and xs, and assume that following the induction hypothesis P xs holds

∀ys. (length (xs ++ ys) == length xs + length ys) (Induction Hypothesis)

P (x:xs)
== {applying definiton of P, choosing a fixed but arbitrary ys}
length ((x:xs) ++ ys) == length (x:xs) + length ys

== {applying length(:)}
length ((x:xs) ++ ys) == (1 + length xs) + length ys

== {applying ((++)(:))}
length (x:(xs ++ ys)) == (1 + length xs) + length ys

== {applying length(:)}
1 + length (xs ++ ys) == (1 + length xs) + length ys

== {applying Induction Hypothesis}
1 + (length xs + length ys) == (1 + length xs) + length ys

== {applying (+)assoc}
1 + (length xs + length ys) == 1 + (length xs + length ys)

== {applying (==)refl}
True

P xs = ∀ys. (length (xs ++ ys) == length xs + length ys)

Note: This sample proof demonstrates the
format and the formal rigour I expect to see
in your exercise solutions and in the exam.

length [] == 0. (length[])
∀x xs. length (x:xs) == 1 + length xs. (length(:))
∀xs. [] ++ xs == xs ((++)[])
∀x xs ys. (x:xs) ++ ys == x:(xs++ys). ((++)(:))
∀n. 0 + n == n ((+)0)
∀a b c. (a + b) + c == a + (b + c) ((+)assoc)
∀x. (x == x) == True. ((==)refl)

Proof Techniques
Structural Induction - Trees

15

To illustrate that this can be done
systematically for any algebraic data
structure, here is the induction
principle for binary trees in Haskell:

where P t :: Tree a -> Bool is any property on trees that we want to prove.

data Tree a = Leaf | Node (Tree a) a (Tree a)

P Leaf ∀x tl tr.(P tl ⋀ P tr ⇒ P (Node tl x tr))
∀t. P t

Base Case Induction Hypothesis

Main goal to
be proven

Induction Step

Inductive Case Subgoals that
need to be proven
in order to prove

the main goal

Note: The symbol ⋀ denotes logical “and” (a.k.a. conjunction), and binds tighter than ⇒,
which denotes logical implication. The universal quantifier ∀ binds the weakest.

Excursion
Proof Rules & Proof Trees

16

Induction is not the only concept that can be precisely expressed in terms of proof rules.

Proof rules can also be used to:

• Precisely specify the meaning and use of logical connectives (e.g., ⋀, ⋁, ⌐, ⇒, ∃, ∀)

• Thereby perform other forms of proof such as proof by contradiction, case distinction, …

• Perform proofs involving equational reasoning

• Construct entire proofs (i.e., proof trees) by combining individual proof rules

In standard mathematics, proofs are normally communicated informally as prosa text.

In formal mathematics, proof rules are used to formally specify the structure of a proof upto its finest details.

This makes it possible for a computer to help construct and check the correctness of a proof!

Excursion
Proof Rules & Proof Trees

17

64 APPENDIX B. SOLUTIONS

Solution 2.2

1. This argument can be effectively modelled in PC . The individual
propositions can be modelled as follows:

R : It is raining.
C : It is cloudy.

The argument itself can be modelled as the following sequent in PC :

R) C,R ` C

The above sequent is valid. Here is its proof:

R) C,R ` C

R ` R
hyp

R,C ` C
hyp

R) C,R ` C
)hyp

2. The validity of this argument rests on reasoning with quantification (in
this case the concept of ‘all humans’). Quantification cannot be ex-
pressed in PCand therefore this argument cannot be effectively mod-
elled in PC . We could give it a try as follows:

HM : All humans are mortal.
SH : Socrates is human.
SM : Socrates is mortal.

HM , SH ` SM

The above sequent cannot be proved although the logical argument
seems to be correct from an informal point of view.

74 APPENDIX B. SOLUTIONS

Solution 3.2

1. This argument can be effectively modelled in FoPCe. The individual
propositions can be modelled as follows:

H(x) : x is human.
M(x) : x is mortal.

s : Sokrates.

The argument itself can be modelled as the following sequent in FoPCe:

8x.H(x))M(x), H(s) ` M(s)

The above sequent is valid. Here is its proof:

8x.H(x))M(x), H(s) ` M(s)

8x.H(x))M(x), H(s) ` H(s)
hyp 8x.H(x))M(x),M(s), H(s) ` M(s)

hyp

8x.H(x))M(x), H(s))M(s), H(s) ` M(s)
)hyp

8x.H(x))M(x), [x := s]H(x))M(x), H(s) ` M(s)
(b=[:=])⇤

8x.H(x))M(x), H(s) ` M(s)
8hyp

* ([x := s]H(x))M(x) b= H(s))M(s))

2. It is intuitively clear that the given inference is valid. However, mod-
elling the first statement can lead to two different predicates. This
is called the problem of multiple generality and occurs when a state-
ment contains more than one quantifier. The statement is therefore
ambiguous. We could model this as follows:

C(x) : x is a cat.
M(x) : x is a mouse.

F (x, y) : x fears y.

The first alternative is to model ‘Some cat is (feared by every mouse)’:

9c.(C(c) ^ 8m.(M(m)) F (m, c)))

• Here is an example of what a complete set of proof rules for first-order
logic with equality looks like.

• Proofs are just trees constructed using these proof rules.

• Using such rules, one could implement a data type that can only contain
valid theorems.

• This is exactly the approach that automated proof assistants use, and is
the original motivation behind parametric polymorphism (a.k.a. generics).

• One almost never constructs proof trees by hand.

• There are several automated proof assistants to choose from:
Isabelle/HOL, Coq, Adga, Idris, Lean, F*, ACL2, PVS, HOL4, …

12 CHAPTER 2. PROPOSITIONAL CALCULUS

2.8 Summary of PC

To summarise this chapter, here is the syntax and proof rule schemas for PC .
We will later also refer to PC as the propositional subset of our mathematical
language.

P ::= ? | > | ¬P | P ^ P | P _ P | P) P | P , P

> b= ¬? (b=>)

P _Q b= ¬(¬P ^ ¬Q) (b=_)

P)Q b= ¬P _Q (b=))

P ,Q b= (P)Q) ^ (Q) P) (b=,)

H, P ` P
hyp

H ` Q

H, P ` Q
mon

H ` P H, P ` Q

H ` Q
cut

H,? ` P
?hyp

H ` > >goal
H,¬P ` ?
H ` P

contr

H, P ` ?
H ` ¬P ¬goal H ` P

H,¬P ` Q
¬hyp

H ` P H ` Q

H ` P ^Q
^goal

H, P,Q ` R

H, P ^Q ` R
^hyp

H ` P

H ` P _Q
_goal1

H ` Q

H ` P _Q
_goal2

H, P ` R H, Q ` R

H, P _Q ` R
_hyp

H, P ` Q

H ` P)Q
)goal

H ` P H, Q ` R

H, P)Q ` R
)hyp

H ` P)Q H ` Q) P

H ` P ,Q
,goal

H, P)Q,Q) P ` R

H, P ,Q ` R
,hyp

Operator binding strength (decreasing): ‘¬’, ‘^’, ‘_’, ‘)’, ‘,’.

8 CHAPTER 1. FIRST-ORDER PREDICATE CALCULUS

1.10 Summary of FoPCe

To summarise this chapter, here are the additional syntactic constructs and
proof rule schemas that we have added to PC (whose summary appears in
§??) to obtain the formal language and theory FoPCe.

P ::= . . . | 8x.P | 9x.P | E = E | R(~E)

E ::= x | f(~E)

9x.P b= ¬8x.¬P (b=9)

8x.P b= 8y.[x := y]P if (y nfin P) (b=8↵)

9x.P b= 9y.[x := y]P if (y nfin P) (b=9↵)

H ` P
H ` 8x.P 8goal (x[nfin H)

H, 8x.P, [x := E]P ` Q
H, 8x.P ` Q

8hyp

H ` [x := E]P
H ` 9x.P 9goal H, P ` Q

H, 9x.P ` Q 9hyp (x[nfin H [{Q})

H ` E = E
=goal

H, E = F ` [x := F]P

H, E = F ` [x := E]P
=hyp

Summary of Syntax, Syntactic Equivalences and Rule Schemas
Introduction to Formal Proof and the Lambda Calculus

Version: 01.40

Theory basicPC

P ::= ? | ¬P | P ^ P

H, P ` P
hyp

H ` Q

H, P ` Q
mon

H ` P H, P ` Q

H ` Q
cut

H,? ` P
?hyp

H,¬P ` ?
H ` P

contr
H, P ` ?
H ` ¬P ¬goal

H ` P
H,¬P ` Q

¬hyp H ` P H ` Q

H ` P ^Q
^goal H, P,Q ` R

H, P ^Q ` R
^hyp

Theory PC
Identical to basicPC with the following additions:

P ::= . . . | > | P _ P | P) P | P , P

> b= ¬? (b=>)

P _Q b= ¬(¬P ^ ¬Q) (b=_)

P)Q b= ¬P _Q (b=))

P ,Q b= (P)Q) ^ (Q) P) (b=,)

H ` > >goal H ` P
H ` P _Q

_goal1 H ` Q

H ` P _Q
_goal2

H, P ` R H, Q ` R

H, P _Q ` R
_hyp H, P ` Q

H ` P)Q
)goal

H ` P H, Q ` R

H, P)Q ` R
)hyp

H ` P)Q H ` Q) P

H ` P ,Q
,goal

H, P)Q,Q) P ` R

H, P ,Q ` R
,hyp

Operator precedence:

In order of increasing strength: ‘,’, ‘)’, ‘_’, ‘^’, ‘¬’.

Theory basicFoPCe

Identical to PC with the following additions:

P ::= . . . | 8x.P | E = E | R(~E)

E ::= x | f(~E)

8x.P b= 8y.[x := y]P if (y nfin P) (b=8↵)

H ` P
H ` 8x.P 8goal (x[nfin H)

H, 8x.P, [x := E]P ` Q

H, 8x.P ` Q
8hyp

H ` E = E
=goal

H, E = F ` [x := F]P

H, E = F ` [x := E]P
=hyp

Theory FoPCe

Identical to basicFoPCe with the following additions:

P ::= . . . | 9x.P

9x.P b= ¬8x.¬P (b=9)

9x.P b= 9y.[x := y]P if (y nfin P) (b=9↵)

H ` [x := E]P

H ` 9x.P 9goal H, P ` Q

H, 9x.P ` Q 9hyp (x[nfin H [{Q})

Operator precedence:

In order of increasing strength: ‘8’ and ‘9’, both of which bind with the same strength,

followed by ‘,’, ‘)’, ‘_’, ‘^’, ‘¬’, ‘=’.

Excursion
Proof Rules & Proof Trees

18

• In computer science, proof rules are used to formally specify the type
systems used in programming languages.

• Here is an example of what a complete set of proof rules for the simply
typed lambda calculus, and the polymorphic lambda calculus look like.

• The proof rules for type systems have a striking simmilarity to those of
mathematical logic.

• This led to the discovery of a deep connection between computation and
proof, known as the Curry-Howard Correspondence, a.k.a. the PAT
interpretation, which is used in systems such as Agda, Coq and Idris.

• "PAT" Interpretation: Propositions As Types, Proofs As Terms

(ii) A statement M : � is derivable from a basis �, notation

� ` M : �

(or � `�! M : � if we wish to stress the typing system) if there is a derivation
of M : � in which all non-cancelled assumptions are in �.

(iii) We use ` M : � as shorthand for ; ` M : �.

2.4. Example. Let � 2 T. Then ` �fx.f(fx) : (�!�)!�!�, which is
shown by the following derivation.

f : �!� (2)

f : �!� (2) x : � (1)

fx : �

f(fx) : �
(1)

�x.f(fx) : �!�
(2)

�fx.f(fx) : (�!�)!�!�

The indices (1) and (2) are bookkeeping devices that indicate at which appli-
cation of a rule a particular assumption is being cancelled.

The administration of assumptions is a global matter. Therefore systems
like the above are usually recast in a sequent style focussing on derivation of
typing judgements rather than typing statements. This is done in the following.
Below, �, x:� is shorthand for � [{x:�}.

2.5. Definition. The sequent-style derivation system for �!-Curry looks as
follows.

�, x:� ` x : �

� ` M : �!⌧ � ` N : �

� ` MN : ⌧

�, x:� ` M : ⌧

� ` �x.M : �!⌧

From the shape of the deduction rules it can easily be seen that every
subterm of a typable term is typable as well.

In order to show that typing is preserved during computation we need the
following substitution property.

2.6. Lemma.

�, x:� ` M : ⌧
� ` N : �

�
) � ` M [x := N] : ⌧.

2.7. Subject Reduction Theorem.

� ` M : �
M !!� M 0

�
) � ` M 0 : �.

4

var

(ii) A statement M : � is derivable from a basis �, notation

� ` M : �

(or � `�! M : � if we wish to stress the typing system) if there is a derivation
of M : � in which all non-cancelled assumptions are in �.

(iii) We use ` M : � as shorthand for ; ` M : �.

2.4. Example. Let � 2 T. Then ` �fx.f(fx) : (�!�)!�!�, which is
shown by the following derivation.

f : �!� (2)

f : �!� (2) x : � (1)

fx : �

f(fx) : �
(1)

�x.f(fx) : �!�
(2)

�fx.f(fx) : (�!�)!�!�

The indices (1) and (2) are bookkeeping devices that indicate at which appli-
cation of a rule a particular assumption is being cancelled.

The administration of assumptions is a global matter. Therefore systems
like the above are usually recast in a sequent style focussing on derivation of
typing judgements rather than typing statements. This is done in the following.
Below, �, x:� is shorthand for � [{x:�}.

2.5. Definition. The sequent-style derivation system for �!-Curry looks as
follows.

�, x:� ` x : �

� ` M : �!⌧ � ` N : �

� ` MN : ⌧

�, x:� ` M : ⌧

� ` �x.M : �!⌧

From the shape of the deduction rules it can easily be seen that every
subterm of a typable term is typable as well.

In order to show that typing is preserved during computation we need the
following substitution property.

2.6. Lemma.

�, x:� ` M : ⌧
� ` N : �

�
) � ` M [x := N] : ⌧.

2.7. Subject Reduction Theorem.

� ` M : �
M !!� M 0

�
) � ` M 0 : �.

4

absterm

(ii) A statement M : � is derivable from a basis �, notation

� ` M : �

(or � `�! M : � if we wish to stress the typing system) if there is a derivation
of M : � in which all non-cancelled assumptions are in �.

(iii) We use ` M : � as shorthand for ; ` M : �.

2.4. Example. Let � 2 T. Then ` �fx.f(fx) : (�!�)!�!�, which is
shown by the following derivation.

f : �!� (2)

f : �!� (2) x : � (1)

fx : �

f(fx) : �
(1)

�x.f(fx) : �!�
(2)

�fx.f(fx) : (�!�)!�!�

The indices (1) and (2) are bookkeeping devices that indicate at which appli-
cation of a rule a particular assumption is being cancelled.

The administration of assumptions is a global matter. Therefore systems
like the above are usually recast in a sequent style focussing on derivation of
typing judgements rather than typing statements. This is done in the following.
Below, �, x:� is shorthand for � [{x:�}.

2.5. Definition. The sequent-style derivation system for �!-Curry looks as
follows.

�, x:� ` x : �

� ` M : �!⌧ � ` N : �

� ` MN : ⌧

�, x:� ` M : ⌧

� ` �x.M : �!⌧

From the shape of the deduction rules it can easily be seen that every
subterm of a typable term is typable as well.

In order to show that typing is preserved during computation we need the
following substitution property.

2.6. Lemma.

�, x:� ` M : ⌧
� ` N : �

�
) � ` M [x := N] : ⌧.

2.7. Subject Reduction Theorem.

� ` M : �
M !!� M 0

�
) � ` M 0 : �.

4

(ii) A statement M : � is derivable from a basis �, notation

� ` M : �

(or � `�! M : � if we wish to stress the typing system) if there is a derivation
of M : � in which all non-cancelled assumptions are in �.

(iii) We use ` M : � as shorthand for ; ` M : �.

2.4. Example. Let � 2 T. Then ` �fx.f(fx) : (�!�)!�!�, which is
shown by the following derivation.

f : �!� (2)

f : �!� (2) x : � (1)

fx : �

f(fx) : �
(1)

�x.f(fx) : �!�
(2)

�fx.f(fx) : (�!�)!�!�

The indices (1) and (2) are bookkeeping devices that indicate at which appli-
cation of a rule a particular assumption is being cancelled.

The administration of assumptions is a global matter. Therefore systems
like the above are usually recast in a sequent style focussing on derivation of
typing judgements rather than typing statements. This is done in the following.
Below, �, x:� is shorthand for � [{x:�}.

2.5. Definition. The sequent-style derivation system for �!-Curry looks as
follows.

�, x:� ` x : �

� ` M : �!⌧ � ` N : �

� ` MN : ⌧

�, x:� ` M : ⌧

� ` �x.M : �!⌧

From the shape of the deduction rules it can easily be seen that every
subterm of a typable term is typable as well.

In order to show that typing is preserved during computation we need the
following substitution property.

2.6. Lemma.

�, x:� ` M : ⌧
� ` N : �

�
) � ` M [x := N] : ⌧.

2.7. Subject Reduction Theorem.

� ` M : �
M !!� M 0

�
) � ` M 0 : �.

4

appterm

abstypeapptype

(ii) A statement M : � is derivable from a basis �, notation

� ` M : �

(or � `�! M : � if we wish to stress the typing system) if there is a derivation
of M : � in which all non-cancelled assumptions are in �.

(iii) We use ` M : � as shorthand for ; ` M : �.

2.4. Example. Let � 2 T. Then ` �fx.f(fx) : (�!�)!�!�, which is
shown by the following derivation.

f : �!� (2)

f : �!� (2) x : � (1)

fx : �

f(fx) : �
(1)

�x.f(fx) : �!�
(2)

�fx.f(fx) : (�!�)!�!�

The indices (1) and (2) are bookkeeping devices that indicate at which appli-
cation of a rule a particular assumption is being cancelled.

The administration of assumptions is a global matter. Therefore systems
like the above are usually recast in a sequent style focussing on derivation of
typing judgements rather than typing statements. This is done in the following.
Below, �, x:� is shorthand for � [{x:�}.

2.5. Definition. The sequent-style derivation system for �!-Curry looks as
follows.

�, x:� ` x : �

� ` M : �!⌧ � ` N : �

� ` MN : ⌧

�, x:� ` M : ⌧

� ` �x.M : �!⌧

From the shape of the deduction rules it can easily be seen that every
subterm of a typable term is typable as well.

In order to show that typing is preserved during computation we need the
following substitution property.

2.6. Lemma.

�, x:� ` M : ⌧
� ` N : �

�
) � ` M [x := N] : ⌧.

2.7. Subject Reduction Theorem.

� ` M : �
M !!� M 0

�
) � ` M 0 : �.

4

var

(ii) A statement M : � is derivable from a basis �, notation

� ` M : �

(or � `�! M : � if we wish to stress the typing system) if there is a derivation
of M : � in which all non-cancelled assumptions are in �.

(iii) We use ` M : � as shorthand for ; ` M : �.

2.4. Example. Let � 2 T. Then ` �fx.f(fx) : (�!�)!�!�, which is
shown by the following derivation.

f : �!� (2)

f : �!� (2) x : � (1)

fx : �

f(fx) : �
(1)

�x.f(fx) : �!�
(2)

�fx.f(fx) : (�!�)!�!�

The indices (1) and (2) are bookkeeping devices that indicate at which appli-
cation of a rule a particular assumption is being cancelled.

The administration of assumptions is a global matter. Therefore systems
like the above are usually recast in a sequent style focussing on derivation of
typing judgements rather than typing statements. This is done in the following.
Below, �, x:� is shorthand for � [{x:�}.

2.5. Definition. The sequent-style derivation system for �!-Curry looks as
follows.

�, x:� ` x : �

� ` M : �!⌧ � ` N : �

� ` MN : ⌧

�, x:� ` M : ⌧

� ` �x.M : �!⌧

From the shape of the deduction rules it can easily be seen that every
subterm of a typable term is typable as well.

In order to show that typing is preserved during computation we need the
following substitution property.

2.6. Lemma.

�, x:� ` M : ⌧
� ` N : �

�
) � ` M [x := N] : ⌧.

2.7. Subject Reduction Theorem.

� ` M : �
M !!� M 0

�
) � ` M 0 : �.

4

2.15. Theorem. The �!-definable functions (w.r.t. N↵, n) are exactly the

conditional multivariate polynomials.

3. Second-order Typed Lambda Calculus

The polymorphic lambda calculus �2 is due to Girard (1972) and Reynolds
(1974). Polymorphism involves the internalization of genericity: rather than
stating, for example,

` �x.x : �!� for all �

the quantification is put into the type of the �-term:

` �x.x : 8↵.↵!↵.

Allowing 8-quantification in input types of functions (rather than just on the
outermost level, like in the above example) leads to a system which is essentially
more powerful than the simply typed �-calculus. For example, in the type
assignment

` �x.xx : (8↵.↵!↵)!(�!�)

the genericity of the input parameter x is exploited by using it as an object of
type (�!�)!(�!�) at the first occurrence and as an object of type �!� at
the second.

3.1. Definition. (i) The set of polymorphic types T = T(�2) is defined by

T ::= V | T!T | 8V.T.

(ii) For each type � 2 T, the set of free type variables TV(�) is defined in
the obvious way.

The Curry style system

3.2. Definition. The derivation rules for �2-Curry extend those for �! as
follows.

�, x:� ` x : �

� ` M : �!⌧ � ` N : �

� ` MN : ⌧

�, x:� ` M : ⌧

� ` �x.M : �!⌧

� ` M : 8↵.�

� ` M : �[↵ := ⌧]
� ` M : �

� ` M : 8↵.�

The last rule only applies if the type variable ↵ does not occur free in any type
in �.

The system �2-Curry has the subject reduction property.

7

2.15. Theorem. The �!-definable functions (w.r.t. N↵, n) are exactly the

conditional multivariate polynomials.

3. Second-order Typed Lambda Calculus

The polymorphic lambda calculus �2 is due to Girard (1972) and Reynolds
(1974). Polymorphism involves the internalization of genericity: rather than
stating, for example,

` �x.x : �!� for all �

the quantification is put into the type of the �-term:

` �x.x : 8↵.↵!↵.

Allowing 8-quantification in input types of functions (rather than just on the
outermost level, like in the above example) leads to a system which is essentially
more powerful than the simply typed �-calculus. For example, in the type
assignment

` �x.xx : (8↵.↵!↵)!(�!�)

the genericity of the input parameter x is exploited by using it as an object of
type (�!�)!(�!�) at the first occurrence and as an object of type �!� at
the second.

3.1. Definition. (i) The set of polymorphic types T = T(�2) is defined by

T ::= V | T!T | 8V.T.

(ii) For each type � 2 T, the set of free type variables TV(�) is defined in
the obvious way.

The Curry style system

3.2. Definition. The derivation rules for �2-Curry extend those for �! as
follows.

�, x:� ` x : �

� ` M : �!⌧ � ` N : �

� ` MN : ⌧

�, x:� ` M : ⌧

� ` �x.M : �!⌧

� ` M : 8↵.�

� ` M : �[↵ := ⌧]
� ` M : �

� ` M : 8↵.�

The last rule only applies if the type variable ↵ does not occur free in any type
in �.

The system �2-Curry has the subject reduction property.

7

(*)

absterm

(ii) A statement M : � is derivable from a basis �, notation

� ` M : �

(or � `�! M : � if we wish to stress the typing system) if there is a derivation
of M : � in which all non-cancelled assumptions are in �.

(iii) We use ` M : � as shorthand for ; ` M : �.

2.4. Example. Let � 2 T. Then ` �fx.f(fx) : (�!�)!�!�, which is
shown by the following derivation.

f : �!� (2)

f : �!� (2) x : � (1)

fx : �

f(fx) : �
(1)

�x.f(fx) : �!�
(2)

�fx.f(fx) : (�!�)!�!�

The indices (1) and (2) are bookkeeping devices that indicate at which appli-
cation of a rule a particular assumption is being cancelled.

The administration of assumptions is a global matter. Therefore systems
like the above are usually recast in a sequent style focussing on derivation of
typing judgements rather than typing statements. This is done in the following.
Below, �, x:� is shorthand for � [{x:�}.

2.5. Definition. The sequent-style derivation system for �!-Curry looks as
follows.

�, x:� ` x : �

� ` M : �!⌧ � ` N : �

� ` MN : ⌧

�, x:� ` M : ⌧

� ` �x.M : �!⌧

From the shape of the deduction rules it can easily be seen that every
subterm of a typable term is typable as well.

In order to show that typing is preserved during computation we need the
following substitution property.

2.6. Lemma.

�, x:� ` M : ⌧
� ` N : �

�
) � ` M [x := N] : ⌧.

2.7. Subject Reduction Theorem.

� ` M : �
M !!� M 0

�
) � ` M 0 : �.

4

(ii) A statement M : � is derivable from a basis �, notation

� ` M : �

(or � `�! M : � if we wish to stress the typing system) if there is a derivation
of M : � in which all non-cancelled assumptions are in �.

(iii) We use ` M : � as shorthand for ; ` M : �.

2.4. Example. Let � 2 T. Then ` �fx.f(fx) : (�!�)!�!�, which is
shown by the following derivation.

f : �!� (2)

f : �!� (2) x : � (1)

fx : �

f(fx) : �
(1)

�x.f(fx) : �!�
(2)

�fx.f(fx) : (�!�)!�!�

The indices (1) and (2) are bookkeeping devices that indicate at which appli-
cation of a rule a particular assumption is being cancelled.

The administration of assumptions is a global matter. Therefore systems
like the above are usually recast in a sequent style focussing on derivation of
typing judgements rather than typing statements. This is done in the following.
Below, �, x:� is shorthand for � [{x:�}.

2.5. Definition. The sequent-style derivation system for �!-Curry looks as
follows.

�, x:� ` x : �

� ` M : �!⌧ � ` N : �

� ` MN : ⌧

�, x:� ` M : ⌧

� ` �x.M : �!⌧

From the shape of the deduction rules it can easily be seen that every
subterm of a typable term is typable as well.

In order to show that typing is preserved during computation we need the
following substitution property.

2.6. Lemma.

�, x:� ` M : ⌧
� ` N : �

�
) � ` M [x := N] : ⌧.

2.7. Subject Reduction Theorem.

� ` M : �
M !!� M 0

�
) � ` M 0 : �.

4

appterm

2.15. Theorem. The �!-definable functions (w.r.t. N↵, n) are exactly the

conditional multivariate polynomials.

3. Second-order Typed Lambda Calculus

The polymorphic lambda calculus �2 is due to Girard (1972) and Reynolds
(1974). Polymorphism involves the internalization of genericity: rather than
stating, for example,

` �x.x : �!� for all �

the quantification is put into the type of the �-term:

` �x.x : 8↵.↵!↵.

Allowing 8-quantification in input types of functions (rather than just on the
outermost level, like in the above example) leads to a system which is essentially
more powerful than the simply typed �-calculus. For example, in the type
assignment

` �x.xx : (8↵.↵!↵)!(�!�)

the genericity of the input parameter x is exploited by using it as an object of
type (�!�)!(�!�) at the first occurrence and as an object of type �!� at
the second.

3.1. Definition. (i) The set of polymorphic types T = T(�2) is defined by

T ::= V | T!T | 8V.T.

(ii) For each type � 2 T, the set of free type variables TV(�) is defined in
the obvious way.

The Curry style system

3.2. Definition. The derivation rules for �2-Curry extend those for �! as
follows.

�, x:� ` x : �

� ` M : �!⌧ � ` N : �

� ` MN : ⌧

�, x:� ` M : ⌧

� ` �x.M : �!⌧

� ` M : 8↵.�

� ` M : �[↵ := ⌧]
� ` M : �

� ` M : 8↵.�

The last rule only applies if the type variable ↵ does not occur free in any type
in �.

The system �2-Curry has the subject reduction property.

7

(*)

Summary of Syntax, Syntactic Equivalences and Rule Schemas
Introduction to Formal Proof and the Lambda Calculus

Version: 01.40

Theory basicPC

P ::= ? | ¬P | P ^ P

H, P ` P
hyp

H ` Q

H, P ` Q
mon

H ` P H, P ` Q

H ` Q
cut

H,? ` P
?hyp

H,¬P ` ?
H ` P

contr
H, P ` ?
H ` ¬P ¬goal

H ` P
H,¬P ` Q

¬hyp H ` P H ` Q

H ` P ^Q
^goal H, P,Q ` R

H, P ^Q ` R
^hyp

Theory PC
Identical to basicPC with the following additions:

P ::= . . . | > | P _ P | P) P | P , P

> b= ¬? (b=>)

P _Q b= ¬(¬P ^ ¬Q) (b=_)

P)Q b= ¬P _Q (b=))

P ,Q b= (P)Q) ^ (Q) P) (b=,)

H ` > >goal H ` P
H ` P _Q

_goal1 H ` Q

H ` P _Q
_goal2

H, P ` R H, Q ` R

H, P _Q ` R
_hyp H, P ` Q

H ` P)Q
)goal

H ` P H, Q ` R

H, P)Q ` R
)hyp

H ` P)Q H ` Q) P

H ` P ,Q
,goal

H, P)Q,Q) P ` R

H, P ,Q ` R
,hyp

Operator precedence:

In order of increasing strength: ‘,’, ‘)’, ‘_’, ‘^’, ‘¬’.

Theory basicFoPCe

Identical to PC with the following additions:

P ::= . . . | 8x.P | E = E | R(~E)

E ::= x | f(~E)

8x.P b= 8y.[x := y]P if (y nfin P) (b=8↵)

H ` P
H ` 8x.P 8goal (x[nfin H)

H, 8x.P, [x := E]P ` Q

H, 8x.P ` Q
8hyp

H ` E = E
=goal

H, E = F ` [x := F]P

H, E = F ` [x := E]P
=hyp

Theory FoPCe

Identical to basicFoPCe with the following additions:

P ::= . . . | 9x.P

9x.P b= ¬8x.¬P (b=9)

9x.P b= 9y.[x := y]P if (y nfin P) (b=9↵)

H ` [x := E]P

H ` 9x.P 9goal H, P ` Q

H, 9x.P ` Q 9hyp (x[nfin H [{Q})

Operator precedence:

In order of increasing strength: ‘8’ and ‘9’, both of which bind with the same strength,

followed by ‘,’, ‘)’, ‘_’, ‘^’, ‘¬’, ‘=’.

Summary of Syntax, Syntactic Equivalences and Rule Schemas
Introduction to Formal Proof and the Lambda Calculus

Version: 01.40

Theory basicPC

P ::= ? | ¬P | P ^ P

H, P ` P
hyp

H ` Q

H, P ` Q
mon

H ` P H, P ` Q

H ` Q
cut

H,? ` P
?hyp

H,¬P ` ?
H ` P

contr
H, P ` ?
H ` ¬P ¬goal

H ` P
H,¬P ` Q

¬hyp H ` P H ` Q

H ` P ^Q
^goal H, P,Q ` R

H, P ^Q ` R
^hyp

Theory PC
Identical to basicPC with the following additions:

P ::= . . . | > | P _ P | P) P | P , P

> b= ¬? (b=>)

P _Q b= ¬(¬P ^ ¬Q) (b=_)

P)Q b= ¬P _Q (b=))

P ,Q b= (P)Q) ^ (Q) P) (b=,)

H ` > >goal H ` P
H ` P _Q

_goal1 H ` Q

H ` P _Q
_goal2

H, P ` R H, Q ` R

H, P _Q ` R
_hyp H, P ` Q

H ` P)Q
)goal

H ` P H, Q ` R

H, P)Q ` R
)hyp

H ` P)Q H ` Q) P

H ` P ,Q
,goal

H, P)Q,Q) P ` R

H, P ,Q ` R
,hyp

Operator precedence:

In order of increasing strength: ‘,’, ‘)’, ‘_’, ‘^’, ‘¬’.

Theory basicFoPCe

Identical to PC with the following additions:

P ::= . . . | 8x.P | E = E | R(~E)

E ::= x | f(~E)

8x.P b= 8y.[x := y]P if (y nfin P) (b=8↵)

H ` P
H ` 8x.P 8goal (x[nfin H)

H, 8x.P, [x := E]P ` Q

H, 8x.P ` Q
8hyp

H ` E = E
=goal

H, E = F ` [x := F]P

H, E = F ` [x := E]P
=hyp

Theory FoPCe

Identical to basicFoPCe with the following additions:

P ::= . . . | 9x.P

9x.P b= ¬8x.¬P (b=9)

9x.P b= 9y.[x := y]P if (y nfin P) (b=9↵)

H ` [x := E]P

H ` 9x.P 9goal H, P ` Q

H, 9x.P ` Q 9hyp (x[nfin H [{Q})

Operator precedence:

In order of increasing strength: ‘8’ and ‘9’, both of which bind with the same strength,

followed by ‘,’, ‘)’, ‘_’, ‘^’, ‘¬’, ‘=’.

Summary of Syntax, Syntactic Equivalences and Rule Schemas
Introduction to Formal Proof and the Lambda Calculus

Version: 01.40

Theory basicPC

P ::= ? | ¬P | P ^ P

H, P ` P
hyp

H ` Q

H, P ` Q
mon

H ` P H, P ` Q

H ` Q
cut

H,? ` P
?hyp

H,¬P ` ?
H ` P

contr
H, P ` ?
H ` ¬P ¬goal

H ` P
H,¬P ` Q

¬hyp H ` P H ` Q

H ` P ^Q
^goal H, P,Q ` R

H, P ^Q ` R
^hyp

Theory PC
Identical to basicPC with the following additions:

P ::= . . . | > | P _ P | P) P | P , P

> b= ¬? (b=>)

P _Q b= ¬(¬P ^ ¬Q) (b=_)

P)Q b= ¬P _Q (b=))

P ,Q b= (P)Q) ^ (Q) P) (b=,)

H ` > >goal H ` P
H ` P _Q

_goal1 H ` Q

H ` P _Q
_goal2

H, P ` R H, Q ` R

H, P _Q ` R
_hyp H, P ` Q

H ` P)Q
)goal

H ` P H, Q ` R

H, P)Q ` R
)hyp

H ` P)Q H ` Q) P

H ` P ,Q
,goal

H, P)Q,Q) P ` R

H, P ,Q ` R
,hyp

Operator precedence:

In order of increasing strength: ‘,’, ‘)’, ‘_’, ‘^’, ‘¬’.

Theory basicFoPCe

Identical to PC with the following additions:

P ::= . . . | 8x.P | E = E | R(~E)

E ::= x | f(~E)

8x.P b= 8y.[x := y]P if (y nfin P) (b=8↵)

H ` P
H ` 8x.P 8goal (x[nfin H)

H, 8x.P, [x := E]P ` Q

H, 8x.P ` Q
8hyp

H ` E = E
=goal

H, E = F ` [x := F]P

H, E = F ` [x := E]P
=hyp

Theory FoPCe

Identical to basicFoPCe with the following additions:

P ::= . . . | 9x.P

9x.P b= ¬8x.¬P (b=9)

9x.P b= 9y.[x := y]P if (y nfin P) (b=9↵)

H ` [x := E]P

H ` 9x.P 9goal H, P ` Q

H, 9x.P ` Q 9hyp (x[nfin H [{Q})

Operator precedence:

In order of increasing strength: ‘8’ and ‘9’, both of which bind with the same strength,

followed by ‘,’, ‘)’, ‘_’, ‘^’, ‘¬’, ‘=’.

Summary of Syntax, Syntactic Equivalences and Rule Schemas
Introduction to Formal Proof and the Lambda Calculus

Version: 01.40

Theory basicPC

P ::= ? | ¬P | P ^ P

H, P ` P
hyp

H ` Q

H, P ` Q
mon

H ` P H, P ` Q

H ` Q
cut

H,? ` P
?hyp

H,¬P ` ?
H ` P

contr
H, P ` ?
H ` ¬P ¬goal

H ` P
H,¬P ` Q

¬hyp H ` P H ` Q

H ` P ^Q
^goal H, P,Q ` R

H, P ^Q ` R
^hyp

Theory PC
Identical to basicPC with the following additions:

P ::= . . . | > | P _ P | P) P | P , P

> b= ¬? (b=>)

P _Q b= ¬(¬P ^ ¬Q) (b=_)

P)Q b= ¬P _Q (b=))

P ,Q b= (P)Q) ^ (Q) P) (b=,)

H ` > >goal H ` P
H ` P _Q

_goal1 H ` Q

H ` P _Q
_goal2

H, P ` R H, Q ` R

H, P _Q ` R
_hyp H, P ` Q

H ` P)Q
)goal

H ` P H, Q ` R

H, P)Q ` R
)hyp

H ` P)Q H ` Q) P

H ` P ,Q
,goal

H, P)Q,Q) P ` R

H, P ,Q ` R
,hyp

Operator precedence:

In order of increasing strength: ‘,’, ‘)’, ‘_’, ‘^’, ‘¬’.

Theory basicFoPCe

Identical to PC with the following additions:

P ::= . . . | 8x.P | E = E | R(~E)

E ::= x | f(~E)

8x.P b= 8y.[x := y]P if (y nfin P) (b=8↵)

H ` P
H ` 8x.P 8goal (x[nfin H)

H, 8x.P, [x := E]P ` Q

H, 8x.P ` Q
8hyp

H ` E = E
=goal

H, E = F ` [x := F]P

H, E = F ` [x := E]P
=hyp

Theory FoPCe

Identical to basicFoPCe with the following additions:

P ::= . . . | 9x.P

9x.P b= ¬8x.¬P (b=9)

9x.P b= 9y.[x := y]P if (y nfin P) (b=9↵)

H ` [x := E]P

H ` 9x.P 9goal H, P ` Q

H, 9x.P ` Q 9hyp (x[nfin H [{Q})

Operator precedence:

In order of increasing strength: ‘8’ and ‘9’, both of which bind with the same strength,

followed by ‘,’, ‘)’, ‘_’, ‘^’, ‘¬’, ‘=’.

Summary of Syntax, Syntactic Equivalences and Rule Schemas
Introduction to Formal Proof and the Lambda Calculus

Version: 01.40

Theory basicPC

P ::= ? | ¬P | P ^ P

H, P ` P
hyp

H ` Q

H, P ` Q
mon

H ` P H, P ` Q

H ` Q
cut

H,? ` P
?hyp

H,¬P ` ?
H ` P

contr
H, P ` ?
H ` ¬P ¬goal

H ` P
H,¬P ` Q

¬hyp H ` P H ` Q

H ` P ^Q
^goal H, P,Q ` R

H, P ^Q ` R
^hyp

Theory PC
Identical to basicPC with the following additions:

P ::= . . . | > | P _ P | P) P | P , P

> b= ¬? (b=>)

P _Q b= ¬(¬P ^ ¬Q) (b=_)

P)Q b= ¬P _Q (b=))

P ,Q b= (P)Q) ^ (Q) P) (b=,)

H ` > >goal H ` P
H ` P _Q

_goal1 H ` Q

H ` P _Q
_goal2

H, P ` R H, Q ` R

H, P _Q ` R
_hyp H, P ` Q

H ` P)Q
)goal

H ` P H, Q ` R

H, P)Q ` R
)hyp

H ` P)Q H ` Q) P

H ` P ,Q
,goal

H, P)Q,Q) P ` R

H, P ,Q ` R
,hyp

Operator precedence:

In order of increasing strength: ‘,’, ‘)’, ‘_’, ‘^’, ‘¬’.

Theory basicFoPCe

Identical to PC with the following additions:

P ::= . . . | 8x.P | E = E | R(~E)

E ::= x | f(~E)

8x.P b= 8y.[x := y]P if (y nfin P) (b=8↵)

H ` P
H ` 8x.P 8goal (x[nfin H)

H, 8x.P, [x := E]P ` Q

H, 8x.P ` Q
8hyp

H ` E = E
=goal

H, E = F ` [x := F]P

H, E = F ` [x := E]P
=hyp

Theory FoPCe

Identical to basicFoPCe with the following additions:

P ::= . . . | 9x.P

9x.P b= ¬8x.¬P (b=9)

9x.P b= 9y.[x := y]P if (y nfin P) (b=9↵)

H ` [x := E]P

H ` 9x.P 9goal H, P ` Q

H, 9x.P ` Q 9hyp (x[nfin H [{Q})

Operator precedence:

In order of increasing strength: ‘8’ and ‘9’, both of which bind with the same strength,

followed by ‘,’, ‘)’, ‘_’, ‘^’, ‘¬’, ‘=’.

Summary of Syntax, Syntactic Equivalences and Rule Schemas
Introduction to Formal Proof and the Lambda Calculus

Version: 01.40

Theory basicPC

P ::= ? | ¬P | P ^ P

H, P ` P
hyp

H ` Q

H, P ` Q
mon

H ` P H, P ` Q

H ` Q
cut

H,? ` P
?hyp

H,¬P ` ?
H ` P

contr
H, P ` ?
H ` ¬P ¬goal

H ` P
H,¬P ` Q

¬hyp H ` P H ` Q

H ` P ^Q
^goal H, P,Q ` R

H, P ^Q ` R
^hyp

Theory PC
Identical to basicPC with the following additions:

P ::= . . . | > | P _ P | P) P | P , P

> b= ¬? (b=>)

P _Q b= ¬(¬P ^ ¬Q) (b=_)

P)Q b= ¬P _Q (b=))

P ,Q b= (P)Q) ^ (Q) P) (b=,)

H ` > >goal H ` P
H ` P _Q

_goal1 H ` Q

H ` P _Q
_goal2

H, P ` R H, Q ` R

H, P _Q ` R
_hyp H, P ` Q

H ` P)Q
)goal

H ` P H, Q ` R

H, P)Q ` R
)hyp

H ` P)Q H ` Q) P

H ` P ,Q
,goal

H, P)Q,Q) P ` R

H, P ,Q ` R
,hyp

Operator precedence:

In order of increasing strength: ‘,’, ‘)’, ‘_’, ‘^’, ‘¬’.

Theory basicFoPCe

Identical to PC with the following additions:

P ::= . . . | 8x.P | E = E | R(~E)

E ::= x | f(~E)

8x.P b= 8y.[x := y]P if (y nfin P) (b=8↵)

H ` P
H ` 8x.P 8goal (x[nfin H)

H, 8x.P, [x := E]P ` Q

H, 8x.P ` Q
8hyp

H ` E = E
=goal

H, E = F ` [x := F]P

H, E = F ` [x := E]P
=hyp

Theory FoPCe

Identical to basicFoPCe with the following additions:

P ::= . . . | 9x.P

9x.P b= ¬8x.¬P (b=9)

9x.P b= 9y.[x := y]P if (y nfin P) (b=9↵)

H ` [x := E]P

H ` 9x.P 9goal H, P ` Q

H, 9x.P ` Q 9hyp (x[nfin H [{Q})

Operator precedence:

In order of increasing strength: ‘8’ and ‘9’, both of which bind with the same strength,

followed by ‘,’, ‘)’, ‘_’, ‘^’, ‘¬’, ‘=’.

λ2

Summary of Syntax, Syntactic Equivalences and Rule Schemas
Introduction to Formal Proof and the Lambda Calculus

Version: 01.40

Theory basicPC

P ::= ? | ¬P | P ^ P

H, P ` P
hyp

H ` Q

H, P ` Q
mon

H ` P H, P ` Q

H ` Q
cut

H,? ` P
?hyp

H,¬P ` ?
H ` P

contr
H, P ` ?
H ` ¬P ¬goal

H ` P
H,¬P ` Q

¬hyp H ` P H ` Q

H ` P ^Q
^goal H, P,Q ` R

H, P ^Q ` R
^hyp

Theory PC
Identical to basicPC with the following additions:

P ::= . . . | > | P _ P | P) P | P , P

> b= ¬? (b=>)

P _Q b= ¬(¬P ^ ¬Q) (b=_)

P)Q b= ¬P _Q (b=))

P ,Q b= (P)Q) ^ (Q) P) (b=,)

H ` > >goal H ` P
H ` P _Q

_goal1 H ` Q

H ` P _Q
_goal2

H, P ` R H, Q ` R

H, P _Q ` R
_hyp H, P ` Q

H ` P)Q
)goal

H ` P H, Q ` R

H, P)Q ` R
)hyp

H ` P)Q H ` Q) P

H ` P ,Q
,goal

H, P)Q,Q) P ` R

H, P ,Q ` R
,hyp

Operator precedence:

In order of increasing strength: ‘,’, ‘)’, ‘_’, ‘^’, ‘¬’.

Theory basicFoPCe

Identical to PC with the following additions:

P ::= . . . | 8x.P | E = E | R(~E)

E ::= x | f(~E)

8x.P b= 8y.[x := y]P if (y nfin P) (b=8↵)

H ` P
H ` 8x.P 8goal (x[nfin H)

H, 8x.P, [x := E]P ` Q

H, 8x.P ` Q
8hyp

H ` E = E
=goal

H, E = F ` [x := F]P

H, E = F ` [x := E]P
=hyp

Theory FoPCe

Identical to basicFoPCe with the following additions:

P ::= . . . | 9x.P

9x.P b= ¬8x.¬P (b=9)

9x.P b= 9y.[x := y]P if (y nfin P) (b=9↵)

H ` [x := E]P

H ` 9x.P 9goal H, P ` Q

H, 9x.P ` Q 9hyp (x[nfin H [{Q})

Operator precedence:

In order of increasing strength: ‘8’ and ‘9’, both of which bind with the same strength,

followed by ‘,’, ‘)’, ‘_’, ‘^’, ‘¬’, ‘=’.

Summary of Syntax, Syntactic Equivalences and Rule Schemas
Introduction to Formal Proof and the Lambda Calculus

Version: 01.40

Theory basicPC

P ::= ? | ¬P | P ^ P

H, P ` P
hyp

H ` Q

H, P ` Q
mon

H ` P H, P ` Q

H ` Q
cut

H,? ` P
?hyp

H,¬P ` ?
H ` P

contr
H, P ` ?
H ` ¬P ¬goal

H ` P
H,¬P ` Q

¬hyp H ` P H ` Q

H ` P ^Q
^goal H, P,Q ` R

H, P ^Q ` R
^hyp

Theory PC
Identical to basicPC with the following additions:

P ::= . . . | > | P _ P | P) P | P , P

> b= ¬? (b=>)

P _Q b= ¬(¬P ^ ¬Q) (b=_)

P)Q b= ¬P _Q (b=))

P ,Q b= (P)Q) ^ (Q) P) (b=,)

H ` > >goal H ` P
H ` P _Q

_goal1 H ` Q

H ` P _Q
_goal2

H, P ` R H, Q ` R

H, P _Q ` R
_hyp H, P ` Q

H ` P)Q
)goal

H ` P H, Q ` R

H, P)Q ` R
)hyp

H ` P)Q H ` Q) P

H ` P ,Q
,goal

H, P)Q,Q) P ` R

H, P ,Q ` R
,hyp

Operator precedence:

In order of increasing strength: ‘,’, ‘)’, ‘_’, ‘^’, ‘¬’.

Theory basicFoPCe

Identical to PC with the following additions:

P ::= . . . | 8x.P | E = E | R(~E)

E ::= x | f(~E)

8x.P b= 8y.[x := y]P if (y nfin P) (b=8↵)

H ` P
H ` 8x.P 8goal (x[nfin H)

H, 8x.P, [x := E]P ` Q

H, 8x.P ` Q
8hyp

H ` E = E
=goal

H, E = F ` [x := F]P

H, E = F ` [x := E]P
=hyp

Theory FoPCe

Identical to basicFoPCe with the following additions:

P ::= . . . | 9x.P

9x.P b= ¬8x.¬P (b=9)

9x.P b= 9y.[x := y]P if (y nfin P) (b=9↵)

H ` [x := E]P

H ` 9x.P 9goal H, P ` Q

H, 9x.P ` Q 9hyp (x[nfin H [{Q})

Operator precedence:

In order of increasing strength: ‘8’ and ‘9’, both of which bind with the same strength,

followed by ‘,’, ‘)’, ‘_’, ‘^’, ‘¬’, ‘=’.

λ→

Key Idea of FP: Denotative Language / Semantics

19

Central passages:

“The commonplace expressions of arithmetic and algebra have a certain simplicity
that most communications to computers lack. In particular, (a) each expression has
a nesting subexpression structure, (b) each subexpression denotes something
(usually a number, truth value or numerical function), (c) the thing an expression
denotes, i.e., its "value", depends only on the values of its sub-expressions, not on
other properties of them.”

“The word "denotative" seems more appropriate than non-procedural, declarative or
functional. The antithesis of denotative is "imperative”.”

“functional programming has little to do with functional notation.”

“The question arises, do the idiosyncracies reflect basic logical properties of the
situations that are being catered for? Or are they accidents of history and personal
background that may be obscuring fruitful developments?”

“we must think in terms, not of languages, but of families of languages. That is to say
we must systematize their design so that a new language is a point chosen from a
well-mapped space, rather than a laboriously devised construction.”

Reminder

Excursion
The Lambda Cube

20

Orign:
λ→ : Simply typed lambda calculus
Terms may only depend on Terms
Curry-Howard correspondence for λ→: Propositional calculus restricted to only use implication.

Going up (2):
λ2 : System F, second-order lambda calculus
Terms may depend on Types
(polymorphism, e.g. (Church-style) λα:*.λx:α.x : ∀α.α→α , or (Curry-style) λx.x:∀α.α→α)
Curry-Howard correspondence for λ2: fragment of second-order intuitionistic logic that uses only universal
quantification.

Going inwards (ω):
Types may depend on Types
(type operators, e.g. "List α" is a type, where List is a type operator with kind * → *)
Not very interesting in isolation.
Normally combined with λ2 (System F) to give λω (System Fω) (a variant of this (System FC) is used in Haskell)
Curry-Howard correspondence for λω (System Fω): Higher-Order Logic

Going rightwards (Π, or P):
Types may depend on values
(dependent types, e.g. "FloatList 3" is a type denoting a list of floats with length 3, where Floatlist : Nat→*)
λΠ : also called λP, LF
Curry-Howard correspondence for λΠ: A form of predicate calculus that only uses implication and universal
quantification.

Richest calculus of all 8:
λΠω : Calculus of Constructions (CC, CoC, λC)

UIFSF BSF UXP CJH EJ੖FSFODFT CFUXFFO UIFTF UXP
TZTUFNT�

'JSTU
 SF੗OFNFOU UZQFT BSF MJNJUFE UP EFDJEBCMF
MPHJDT UIBU JT XIZ UIFZ DBO P੖FS NVDI NPSF BV�
UPNBUJPO BOE UZQF JOGFSFODF <+IB>� 3F੗OFNFOU
UZQF TZTUFNT POMZ BMMPX WFSJ੗DBUJPO DPOEJUJPOT
UIBU DBO CF Fਖ਼DJFOUMZ WBMJEBUFE CZ B 4BUJT੗BCJM�
JUZ NPEVMP UIFPSJFT 	4.5
 4PMWFS <74++��>� य़JT
BVUPNBUFT UIF TPMWJOH PG UIF DPOTUSBJOUT UP DIFDL
XIFUIFS B QSPHSBN JT XFMM� PS JMM�GPSNFE� %FQFO�
EFOU UZQFT
 PO UIF PUIFS IBOE
 OFFE QSPPG UFSNT BT
DBO CF TFFO JO BO JOTFSUJPO�TPSU JNQMFNFOUBUJPO
JO *ESJT <'PT>� य़JT JNQMFNFOUBUJPO DPOUBJOT B MPU
PG UIFTF QSPPG UFSNT
 UIBU BDUVBMMZ MPPL MJLF QSP�
HSBN DPEF
 UP WFSJGZ UIBU UIF JOTFSUJPO TPSU BDUV�
BMMZ HJWFT CBDL B TPSUFE MJTU BOE DPOUBJOT UIF TBNF
FMFNFOUT UIBU XFSF QBTTFE BT JOQVUT� य़F JNQMF�
NFOUBUJPO JO -JRVJE)BTLFMM XJUI SF੗OFNFOU UZQFT
JT NVDI TIPSUFS <+IB>�

4FDPOE
 SF੗OFNFOU UZQFT KVTU IBWF UIFJS QSFE�
JDBUF UIFZ EFQFOE VQPO� 'PS {n : int | n >
42} UIF UZQF KVTU DPOUBJOT BMM WBMVFT UIBU BSF CJH�
HFS UIBO ��� 8JUI EFQFOEFOU UZQFT
 ZPV DBO XSJUF
BOZUIJOH JO B UZQF UIBU ZPV DBO OPSNBMMZ XSJUF JO
BO FYQSFTTJPO� 8F DBO DPNQVUF B UZQF BT XF TBX
JO UIF JOUSPEVDUJPO XJUI UIF isSingleton GVOD�
UJPO UIBU JT BHBJO TIPXO JO -JTUJOH ���

� isSingleton : Bool -> Type
� isSingleton True = Nat
� isSingleton False = List Nat

Listing 12. Function isSingleton in Idris that computes a type

and returns it. This cannot be done with refinement types.

��� 1PMZNPSQIJTN
4PNF EFQFOEFOU UZQF GFBUVSFT DBO CF NPEFMFE

XJUI QPMZNPSQIJTN� 1PMZNPSQIJTN BMMPXT VT UP
XSJUF GVODUJPOT UIBU XPSL GPS EJ੖FSFOU UZQFTۘXF
XSJUF UFSNT UIBU BCTUSBDU PWFS UZQFT� 'PS EFQFOEFOU
UZQFT
 XF XSJUF UZQFT UIBU EFQFOE PO UFSNTۘUZQFT
BCTUSBDU PWFS UFSNT� य़JT DBO BMTP CF TFFO JO UIF λ�
DVCF JO 'JHVSF � CZ #BSFOESFHU <#BS��>� 1PMZNPS�
QIJTN JT SFQSFTFOUFE CZ λ2 BOE EFQFOEFOU UZQFT
CZ λΠ PO B EJ੖FSFOU BYJT PG UIF DVCF� य़JT NFBOT
UIFZ IBWF BMNPTU OPUIJOH JO DPNNPO�

1PMZNPSQIJTN BMMPXT B GVODUJPO UP CFIBWF EJG�
GFSFOUMZ PO EJ੖FSFOU UZQFT� 0OF DBO VTF GVODUJPO

PWFSMPBEJOH TP UIF GVODUJPO CFIBWFT EJ੖FSFOUMZ
GPS EJ੖FSFOU UZQFT BOE XF FWFO HFU B EJ੖FSFOU SF�
UVSO UZQF EFQFOEJOH PO UIF QBTTFE UZQF BT TIPXO
JO -JTUJOH ���

� public int foo(char c) {
� return (int) c;
� }
�
� public String foo(int i) {
� return Integer.toString(i);
� }

Listing 13. Ad hoc polymorphism in Java. We can differentiate

between two types and depending on the type we return a different

type. These are however two completely different functions.

8F DPVME BMTP IBWF UIF JNQMFNFOUBUJPO CF�
IBWF EJ੖FSFOUMZ GPS EJ੖FSFOU UZQFT CZ TVCUZJOH�
य़JT JT IPXFWFS FWFSZUIJOH XF DBO BDIJFWF XJUI
QPMZNPSQIJTN� 8F DBOOPU DPNQVUF UZQFT BOE SF�
UVSO UZQFT UIBU EFQFOE PO B WBMVF� /PUJDF UIBU B
GVODUJPO UIBU SFUVSOT B Vector<int> XJUI B TQF�
DJ੗D MFOHUI EPFT OPU DPNQVUF B UZQF� &JUIFS UIF
UZQF JT QBTTFE FYQMJDJUFMZ PS JU JT TUBUJD BOE OPU EF�
QFOEJOH PO BOZ QBTTFE BSHVNFOU UZQF BOE XF SF�
UVSO BO JOTUBODF PG UIJT UZQF BOE OPU UIF UZQF JU�
TFMG�

λω λΠω

λ2 λΠ2

λω λΠω

λ→ λΠ

Figure 1. λ-cube by Barendregt showing different abstractions

which are in the end just features that a programming language can

have [Bar91]

�

3FGFSFODFT
<"NS��> $ISJTUPQI "NSFJO� 4JNQMZ 5ZQFE -BNCEB $BMDVMVT XJUI 1BSBNFUSJD 1PMZNPSQIJTN
 �����
<#BS��>)FOESJL 1JFUFS #BSFOESFHU� *OUSPEVDUJPO UP HFOFSBMJ[FE UZQF TZTUFNT� +� 'VODU� 1SPHSBN�

�	�
����ۗ���
 �����
<#$"4> &EXJO #SBEZ
 %BWJE $ISJTUJBOTFO
 BOE "INBE 4BMJN "M�4JCBIJ� *ESJT 7FDU *N�

QMFNFOUBUJPO PO (JUIVC� https://github.com/idris-lang/Idris-dev/blob/
61d5865afcbb65eb79125ddfdb23dcb0ec77f181/libs/base/Data/Vect.idr� <0O�
MJOF� BDDFTTFE ���/PWFNCFS�����>�

<#)��> &EXJO #SBEZ BOE ,FWJO)BNNPOE� $PSSFDU�CZ�DPOTUSVDUJPO DPODVSSFODZ� 6TJOH EFQFO�
EFOU UZQFT UP WFSJGZ JNQMFNFOUBUJPOT PG F੖FDUGVM SFTPVSDF VTBHF QSPUPDPMT� 'VOEBN� *OG�

���	�
����ۗ���
 "QSJM �����

<#SB> &EXJO #SBEZ� !FEXJOCSBEZ PO 5XJ॒FS� https://twitter.com/edwinbrady/status/
431415892233428992� <0OMJOF� BDDFTTFE ���0DUPCFS�����>�

<$PN> य़F *ESJT $PNNVOJUZ� 5ZQFT BOE 'VODUJPOT ۘ *ESJT EPDVNFOUBUJPO� http://docs.
idris-lang.org/en/latest/tutorial/typesfuns.html� <0OMJOF� BDDFTTFE ���
/PWFNCFS�����>�

<%JP> -PVJT %JPOOF� #PPTU�)BOB� 6TFS .BOVBM� http://www.boost.org/doc/libs/1_61_0/
libs/hana/doc/html/index.html� <0OMJOF� BDDFTTFE ���%FDFNCFS�����>�

<&JT> 3JDIBSE &JTFOCFSH� 1MBOOFE $IBOHF UP ()$� NFSHJOH UZQFT BOE LJOET]
5ZQFT BOE ,JOET� https://typesandkinds.wordpress.com/2015/08/19/
planned-change-to-ghc-merging-types-and-kinds/� <0OMJOF� BDDFTTFE ��
/PWFNCFS�����>�

<&JT��> 3JDIBSE"� &JTFOCFSH� %FQFOEFOU 5ZQFT JO)BTLFMM� FPSZࡋ BOE 1SBDUJDF� 1I% UIFTJT
 6OJWFSTJUZ
PG 1FOOTZMWBOJB
 ����� VOQVCMJTIFE UIFTJT�

<'PT> %BWJE 'PTUFS� *ESJT JOTFSUJPO�TPSU *NQMFNFOUBUJPO PO (JUIVC�
https://github.com/davidfstr/idris-insertion-sort/blob/
136cb0f53b7dbc705e59e1ea1cb579cbd9e169e5/InsertionSort.idr� <0OMJOF�
BDDFTTFE ���%FDFNCFS�����>�

<(BN> #FO (BNBSJ� ()$ ����� JT BWBJMBCMF� https://ghc.haskell.org/trac/ghc/blog/
ghc-8.0.1-released� <0OMJOF� BDDFTTFE ��/PWFNCFS�����>�

<(SJ��> +BOOJT (SJNN� $VSSZ�)PXBSE *TPNPSQIJTN %PXO UP &BSUI
 �����
<JES> *ESJT] " -BOHVBHF XJUI %FQFOEFOU 5ZQFT� http://www.idris-lang.org/� <0OMJOF�

BDDFTTFE ���0DUPCFS�����>�
<*+��> $F[BS *POFTDV BOE 1BUSJL +BOTTPO� %FQFOEFOUMZ�UZQFE QSPHSBNNJOH JO TDJFOUJ੗D DPNQVUJOH�

*O 3BMG)JO[F
 FEJUPS
 *NQMFNFOUBUJPO BOE "QQMJDBUJPO PG 'VODUJPOBM -BOHVBHFT� ��UI *OUFSOB�
UJPOBM 4ZNQPTJVN
 *'- ����
 0YGPSE
 6,
 "VHVTU �� � 4FQUFNCFS �
 ����
 3FWJTFE 4FMFDUFE 1BQFST

QBHFT ���ۗ���� 4QSJOHFS #FSMJO)FJEFMCFSH
 #FSMJO
)FJEFMCFSH
 �����

<+IB> 3BOKJU +IBMB� 1SPHSBNNJOH XJUI 3F੗OFNFOU 5ZQFTۘ*OTFSUJPO 4PSU JO -JRVJE)BTLFMM�
http://ucsd-progsys.github.io/lh-workshop/04-case-study-insertsort.
html#/ordered-lists� <0OMJOF� BDDFTTFE ���/PWFNCFS�����>�

<.D#��> $POOPS .D#SJEF� 'BLJOH *U� 4JNVMBUJOH %FQFOEFOU 5ZQFT JO)BTLFMM
 �����
<1JF��> #FOKBNJO $� 1JFSDF� 5ZQFT BOE 1SPHSBNNJOH -BOHVBHFT� .*5 1SFTT
 $BNCSJEHF
 ."
 64"

�����
<1JF��> #FOKBNJO $� 1JFSDF� "EWBODFE 5PQJDT JO 5ZQFT BOE 1SPHSBNNJOH -BOHVBHFT� य़F .*5 1SFTT

�����
<SFE> %JTDVTTJPO PO SFEEJU۝T �S�EFQFOEFOU@UZQFT� https://www.reddit.com/r/dependent_

types/comments/5j68ww/what_can_i_do_with_dependent_types_that_i_
cannot/� <0OMJOF� BDDFTTFE ���%FDFNCFS�����>�

��

Note: These are from personal notes that I have not
checked myself. Do not quote me on this.

Reasoning about Programs
Going further

21

• Chapter 16 of the textbook contains some more examples
of proofs, as well as a section on proving the correctness
of a compiler.

• Chapter 17 of the textbook goes even further by showing
how the implementation of a compiler can be calculated
directly from the statement of its correctness.

• Try using an automated proof assistant such as
Isabelle/HOL, or a dependently typed programming
language such as Agda, Idris, or Coq.

• Try to build your own proof assistant in Haskell!

Selected Work

11

Gotthard Base Tunnel
Safety-relevant Functions “Freihaltung”, “Überfullverhinderung”

12

Gotthard Base Tunnel
Safety-relevant Functions “Freihaltung”, “Überfullverhinderung”

13

Inspiration from:
• Refinement calculus, Invariant preservation
• Inductively defined sets

Gotthard Base Tunnel
Safety-relevant Functions “Freihaltung”, “Überfullverhinderung”

14

Are we being too paranoid?
Will these functions ever be needed?

Lambda Calculus Calculator
https://lambdacalc.io

15

https://lambdacalc.io/

Lambda Calculus Calculator

16

Type-Based API Search
https://typesearch.dev

17

https://typesearch.dev/

Hoogle for the hungry masses
Type-based API Search for All – typesearch.dev

18

Hoogle for the hungry masses
Type-based API Search for All – typesearch.dev

19

Hoogle for the hungry masses
Type-based API Search for All – typesearch.dev

20

• Targeted at mainstream
(typed OO) languages

• Inspiration: Curry-Howard Isomorphism
• Type Search is Proof Search!
• AdHoc à General
• Code synthesis also possible

• TyDe Workshop ICFP 2024 (ACM)

CodePanorama

21

CodePanorama
The 10 ms code review

22
ICPC 2022 (ACM/IEEE)

CodePanorama
The 10 ms code review

23

https://github.com/google/guava

https://github.com/google/guava

CodePanorama
The 10 ms code review

24

https://github.com/haskell-servant/servant
Highlights: Change Frequency

https://github.com/haskell-servant/servant

Robotics

25

Robotic Artwork
Joint work with artis duo Pors & Rao

26

• “Untitled” https://www.youtube.com/watch?v=RlDoAHKzZu0&t=110s

• Using Functional Reactive Programming (FRP)
to improve developer experience and control

• FARM ICFP 2024

1 2 3 4 5 6

1 2 3 4 5 6

A

B

C

D

A

B

C

D

Date: 2019-10-21
KiCad E.D.A. kicad (5.1.4)-1

Rev: V1.1Size: A4
Id: 1/1

Title: Pygmy MCU Board
File: pygmy_master.sch
Sheet: /
PathosLab @ WyssZurich
philipp.reist@wysszurich.ch

D
14

Le
d_

R
ED

GND

+3V3

GND
C16

27pF

R7
10k

R12
10k

SW1

SW_PUSH

VTGT1

/RESET 10

SWDIO/TMS 2

GND3 SWCLK/TCK 4

GND5 SWO/TDO 6

NC7 TDI 8

NC9

J11

ARM-SWO/JTAG

C15

24pF

D
15

LE
D

_B
LU

E
D

16

LE
D

 G
R

EE
N

D13

LED_POWER

R6
270

R
11 27
0

R
10

82
R

5

GND

1 2

J5

24V_IN

1 2 3

J7

CAN0

1 2 3

J9

CAN0

1 2 3

J1

CAN1

1 2 3

J3

CAN1

1 2 3

J2

ADC_MIC

1 2 3

J4

ADC_KNOB

TXD1

G
N

D
2

VC
C

3

RXD4

VREF5 CANL 6

CANH 7

S8

U3

SN65HVD231QD

R
5

10
k

R
9

30
0

1 2 3 4 5 6 7 8

J6

nRF24L01

C1

100nF

C4

100nF

R8
120R4

120
Y1

Crystal

R13
1M

C5

100nF

D3 TV
S3

3

D2 TV
S3

3

C18

100nF

C17

10uF

R
14 10
0

R
15 10
0

PTE01

PTE710

PTB21100

PTB22101

PTB23102

PTC0103

PTC1/LLWU_P6104

PTC2105

PTC3/LLWU_P7106

VSS107

VDD108

PTC4/LLWU_P8 109

PTE811

PTC5/LLWU_P9 110

PTC6/LLWU_P10 111

PTC7 112

PTC8 113

PTC9 114

PTC10 115

PTC11/LLWU_P11 116

PTC12 117

PTC13 118

PTC14 119

PTE9/LLWU_P1712 PTC15 120

VSS 121

VDD 122

PTC16 123

PTC17 124

PTC18 125

PTC19 126

PTD0/LLWU_P12 127

PTD1 128

PTD2/LLWU_P13 129

PTE10/LLWU_P1813

PTD3 130

PTD4/LLWU_P14 131

PTD5 132

PTD6/LLWU_P15 133

VSS 134

VDD 135

PTD7 136

PTD8/LLWU_P24 137

PTD9 138

PTD10 139

PTE1114

PTD11/LLWU_P25 140

PTD12 141

PTD13 142

PTD14 143

PTD15 144

PTE1215

VDD16

VSS17

VSS18

USB0_DP19

PTE1/LLWU_P02

USB0_DM20

VREG_OUT21

VREG_IN022

VREG_IN123

USB1_VSS24

USB1_DP25

USB1_DM26

USB1_VBUS27

ADC0_DM0/ADC1_DM328

ADC1_DP0/ADC0_DP329

PTE2/LLWU_P13

ADC1_DM0/ADC0_DM330

VDDA31

VREFH32

VREFL33

VSSA34

ADC1_SE16/CMP2_IN2/ADC0_SE2235

ADC0_SE16/CMP1_IN2/ADC0_SE2136

VREF_OUT/CMP1_IN5/CMP0_IN5/ADC1_SE18 37

DAC0_OUT/CMP1_IN3/ADC0_SE23 38

DAC1_OUT/CMP0_IN4/CMP2_IN3/ADC1_SE23 39

PTE34 XTAL32 40

EXTAL32 41

VBAT 42

VDD 43

VSS 44

PTE24 45

PTE25/LLWU_P21 46

PTE26 47

PTE27 48

PTE28 49

VDD5

PTA0 50

PTA1 51

PTA2 52

PTA3 53

PTA4/LLWU_P3 54

PTA5 55

VDD 56

VSS 57

PTA6 58

PTA7 59

VSS6

PTA8 60

PTA9 61

PTA10/LLWU_P22 62

PTA11/LLWU_P23 63

PTA12 64

PTA13/LLWU_P4 65

PTA14 66

PTA15 67

PTA16 68

PTA17 69

PTE4/LLWU_P27

VDD 70

VSS 71

PTA18/EXTAL0 72

PTA19/XTAL073

RESET_b74

PTA2475

PTA2576

PTA2677

PTA2778

PTA2879

PTE58 PTA2980

PTB0/LLWU_P581

PTB182

PTB283

PTB384

PTB485

PTB586

PTB687

PTB788

PTB889

PTE6/LLWU_P169

PTB990

PTB1091

PTB1192

VSS93

VDD94

PTB1695

PTB1796

PTB1897

PTB1998

PTB2099

U4
K66_144LQFP

1

10 11 12 13 14 15 16
2345678

9

R
P1

D12 TVS33

C6

100nF

GND

GNDGND

+3V3

GND

GND

R
2

10
0

Vin1 NC 10

Vout5 NC 6
GND 7
GND 9

U2

TSR1-24XXSM
L1

5.6uH

GND

+3V3

C3

10uF

C2

10uFD
1

TV
S2

4

R
3

10
0

D8 TVS33

D9 TVS33

D4TVS33

D10 TVS33

D5TVS33

D6TVS33

D11 TVS33

GND

+3V3
+3V3

+3V3 +3V3

GND
GND GND

GND

GND GND
GND

R
1

10
k

GNDGND GND

GND

+24V

GND+24V

PWR_FLAGPWR_FLAG

C13

100nF

+24V

GND

C9

100nF

C8

100nF

C14

100nF

GND
GND

1 2 3

J1
0

UART1

GND

C7

100nF

TXD1

G
N

D
2

VC
C

3

RXD4

VREF5 CANL 6

CANH 7

S8

U1

SN65HVD231QD

GND GND

C10

100nF

C11

100nF

+3V3

+3V3

C12

100nF

TDI

TDI

CAN1L

3V3

GND

3V3

3V3

3V3

3V3

3V3

3V3

3V3

3V3
3V3

GND

3V3

XTALEXTAL

XTAL

EXTAL

SP
I0

_C
S

SP
I0

_S
C

K
SP

I0
_S

O
U

T

LE
D

_R
ED

3V3

SWCLK

/RESET

SWO
SWD

/RESET

/RESET

SWO
SWCLK
SWD

GND

SP
I0

_S
IN

GND

GND

GND

GND

GND

GND
GND
GND

GND

SPI0_SCK

C
AN

1H

CAN1_TX

C
AN

0L

nRF_CE

C
AN

0L

nRF_IRQ

C
AN

0H

SPI0_SIN

C
AN

0H

SPI0_SOUT

CAN1_RX

U
AR

T1
_T

X

SPI0_CSU
AR

T1
_R

X

ADC1_KNOB

AD
C

1_
KN

O
B

AD
C

0_
M

IC

CAN1HCAN0H

CAN0L

CAN0_TX

LE
D

_B
LU

E

LE
D

_G
R

N

nR
F_

IR
Q

LED_RED

nR
F_

C
E

LED_BLUE

CAN1_RX

LED_GRN

CAN1_TXCAN0_TX

CAN0_RX

CAN0_RX

ADC0_MIC

C
AN

1L UART1_TX

C
AN

1L

UART1_RX

C
AN

1H

DNP

Load Caps configured in MCU internally.

DNP

FIDUCIALS TOP

DNP

DNP

DNP

https://www.youtube.com/watch?v=RlDoAHKzZu0&t=110s

ZuriHac

29

ZuriHac

30

The biggest Haskell community event in the world: a three-day grassroots coding
festival co-organized by the Zürich Friends of Haskell and the OST Eastern

Switzerland University of Applied Science.

ZuriHac

31

• > 400 Participants

• 50% Europe, 35% CH, 15% Overseas

• 75% Industry, 25% Academia

• Organizing since 2017 at the OST (Before: Google, ETHZ, Better AG)

• Main aim: To promote and contribute to the state of the art in principled computer programming.

• Focus: Functional Programming and Haskell

• But not only...

• Applications: FRP, Build Systems, SE Practices, Metaprogramming, Hardware Design, Verification...

• Other Programming Languages: Agda, Verse, Racket, Dhal, Nix, ...

• Fundamental Concepts: Type Systems, PL Semantics, Logik, Category Theory, Combinators, ...

Highlights ZuriHac 2024

32

• Keynotes (others were great too)

• Low level: “Functional Hardware Description and verification”
(Mary Sheeran)

• High level: “Haskell in Space”: Runtime verification at NASA
(Ivan Perez)

• With both feet on the ground: “Making people dance with Haskell”:
(Alex McLean)

• 3 Advanced tracks: FRP, Generic Programming, Dependent Types

• Beginner Track with 30 Participants (Eliane Schmidli)

• For some, just too overwhelming: "I just arrived in Paris and noticed that I may have
forgot my luggage at the OST. Could you please take a look"

https://zurihac.info
https://zfoh.ch/zurihac2025/

The biggest Haskell community event in the world: a three-day grassroots coding festival
co-organized by the Zürich Friends of Haskell and the OST Eastern Switzerland University

of Applied Science.

Saturday 7 June — Monday 9 June 2025
Rapperswil, Switzerland

Registration is open and free.

Come talk to me

if you have any

questions –

Farhad Mehta

https://zurihac.info/
https://zfoh.ch/zurihac2025/

