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Reasoning about Programs
Motivation
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Till now, we have been able to:

• Formulate some interesting properties

• Test them using property-based testing (Quickcheck)

But testing can only show the presence of faults, never their absence.

How we can prove that our programs always satisfy some given properties?

We will now see how this is possible using techniques that you are already 
familiar with from high-school math!



Reasoning about Programs
Why is this important?
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• Our luck at producing programs that work will run out J

• Formal Proof gives us the security to program in a way that is

• Scalably Reliable

• Scalably Efficient

• It forces us to keep our programs simple and elegant

• It makes it even possible to ‘derive’ correct programs from their properties

• There is a deep connection between proofs and programs:
"PAT" Interpretation: Propositions As Types, Proofs As Terms



Reasoning about Programs
Why is this relevant to Functional Programming?
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• Functional programs are particularly amenable to sound and simple reasoning

• This is their superpower, and is what makes them easier to work with for 
humans and machines

• Functional Programming and Formal Proof share a very rich legacy

• Remember: ML was originally the “Meta Language” for a theorem prover

• Functional Programming is often the gateway drug to other formal methods



Reasoning about Programs
Lesson Goals
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All participants are able to

• State relevant correctness properties for functional programs (done)

• Provide counter-examples of program properties that do not hold (done)

• Perform formal proofs of program properties that hold using equational 
rewriting and induction



Proof Techniques
Equational Reasoning
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We have already seen this many times in math, and since the start of this course.

sum [1..5]
== { applying [..] }
sum [1,2,3,4,5] 

== { applying sum }
1+2+3+4+5 

== { applying + }
15

∀x.qsort [x] == [x]

qsort [x]
== {++applying qsort }
qsort [] ++ [x] ++ qsort []

== { applying qsort }
[] ++ [x] ++ [] 

== { applying ++ }
[x]

totalWordCount :: [String] -> Int

totalWordCount =

\strs -> foldr (+) 0 ( map length (map words strs))

== {Definition of (.), η conversion, map f . map g == map (f . g) }

foldr (+) 0 . map (length . words)

== {applying  “foldr f v . map g = foldr (f.g) v” }

foldr ((+) . length . words) 0

This is and will remain the main workhorse for our proofs.

Note: Mathematitians are often cavalier and inconsiderate, and often overestimate their 
readers’ patience. In this course we will be extra careful and explicit. Each step of a proof 
may only use a definition, or a property that we have already proven. The justification for 
each step needs to reflect this. 



Proof Techniques
Equational Reasoning – A note on the form of proofs used in the text book
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The textbook uses the ‘=’ symbol 
in between lines of a derivation:

    1 6 . 4 I n d u c t i o n o n n u m b e r s 233

   S u c c ( a d d n Z e r o )

  “ t induction hypothesis u

 S u c c n



           Because proofs by induction normally involve more than one calculation, it is

             useful to explicitly indicate the end of the proof. For this purpose, we use a

         square box  in the right-hand margin, as illustrated above.

            As another example, let us show that addition of natural numbers is associa-

                   tive. That is, a d d x ( a d d y z ) a d d ( a d d x y ) z“ for all x y, and z. There

            are three variables, so which should induction be performed over? Note that the

              a d d function is defined by pattern matching on its first argument, so it is natural

               to try induction on x, which appears twice as the first argument to a d d in the

            associativity equation, whereas y only appears once as such and z never. Using

            induction on x, the proof of the associativity of a d d proceeds as follows.

 Base case:

    a d d Z e r o ( a d d y z )

    “ t applying the outer a d d u

  a d d y z

  “ t unapplying a d d u

    a d d ( a d d Z e r o y ) z

 Inductive case:

     a d d ( S u c c x ) ( a d d y z )

    “ t applying the outer a d d u

     S u c c ( a d d x ( a d d y z ) )

  “ t induction hypothesis u

     S u c c ( a d d ( a d d x y ) z )

    “ t unapplying the outer a d d u

     a d d ( S u c c ( a d d x y ) z )

    “ t unapplying the inner a d d u

     a d d ( a d d ( S u c c x ) y ) z )



             Note that both cases in the proof start by applying definitions, and conclude by

           unapplying definitions. This pattern is typical in proofs by induction, but the

           latter part may seem somewhat mysterious at first sight. In particular, knowing

        which definitions to unapply seems to require a degree of foresight. In prac-

             tice, however, if one becomes stuck at a certain point during such a calculation,

              progress can often be made by focusing on the desired end result and trying to

        work backwards to the point where one became stuck.

        For example, after applying the induction hypothesis in the inductive case

                above to obtain S u c c ( a d d ( a d d x y ) z ), it may not be clear how to proceed,

We will use the ‘==’ symbol instead to be 
more consistent with the notation of 
equality used in Haskell, since ‘=’ in Haskell 
is used for definitions. We will also be more 
explicit on which properties we use in each 
step of the proof:

add Zero m == m (addZero)

It is often easier to state and simplify both sides 
of the equality that we are trying to prove in each 
step, thereby avoiding awkward ‘unapplying’ 
steps. We will also underline the sub terms that 
get rewritten at each step for more clarity:

add Zero (add y z)
== { applying addZero }
add y z 

== { unapplying addZero }
add (add Zero y) z 

   232 R e a s o n i n g a b o u t p r o g r a m s

              Now suppose we want to prove that some property, p say, holds for all (finite)

            natural numbers. Then the principle of induction states that it is sufficient to

              show that p holds for Z e r o, called the base case, and that p is preserved by S u c c,

             called the inductive case. More precisely, in the inductive case one is required to

              show that if the property p holds for any natural number n, called the induction

       hypothesis , then it also holds for S u c c n.

             Why is induction sufficient to show that p holds for all natural numbers? For

             example, how does it then follow that p holds for S u c c ( S u c c Z e r o ). Starting

               from the base case that p holds for Z e r o, we can apply the inductive case once

                to conclude that p holds for S u c c Z e r o, by taking , and then apply then “ Z e r o

             inductive case a second time to conclude that p holds for S u c c ( S u c c Z e r o ),

               by taking n “ S u c c Z e r o. In a similar manner, it can be established that the

      property p holds for any natural number.

            It is useful to draw an analogy with the domino effect. Suppose there is a

              line of dominoes standing on end and you know that the first domino will fall,

             and that whenever a domino falls then its next neighbour will also fall. Then

                it is clear that all the dominoes will fall, by applying the first fact to get the

            process started, and repeatedly applying the second to keep it going. The same

           pattern of reasoning occurs with induction: we first verify the required property

             for Z e r o (the first domino falls), then that the property is preserved by S u c c

             (if any domino falls, then so will its neighbour), and conclude that the property

       holds for all natural numbers (all dominoes fall).

         As a concrete example, consider the definition of a recursive function that

       takes two natural numbers and adds them together:

      a d d : : N a t - > N a t - > N a t

    a d d Z e r o m = m

        a d d ( S u c c n ) m = S u c c ( a d d n m )

           From the first equation, it is immediate that a d d Z e r o m “ m holds for any

               natural number m. Now let us show that the dual property, a d d n Z e r o “ n,

              which we abbreviate by p, also holds for all natural numbers n. We proceed by

         induction on n. The base case, showing that p Z e r o    holds, amounts to showing

        that a d d Z e r o Z e r o Z e r o“ , which is immediate:

  a d d Z e r o Z e r o

  “ t applying a d d u

Z e r o

               For the inductive case, we must show that if p holds for any natural number n,

              then p ( S u c c n ) also holds. That is, using the induction hypothesis a d d n Z e r o

               “ “n as an assumption, we must show that the equation a d d ( S u c c n ) Z e r o

        S u c c n holds, which can be verified as follows:

   a d d ( S u c c n ) Z e r o

  “ t applying a d d u
The example used on this slide is the proof of add Zero (add y z) == add (add Zero y) z
using the definiton of add on page 233 of “Programming in Haskell 2ed” by Graham Hutton 

add Zero (add y z) == add (add Zero y) z 
== { applying addZero }
add y z == add (add Zero y) z

== { applying addZero }
add y z == add y z

== { (==)refl }
True

Note: All undefined variables that occur in properties to be assumed or proven are by convention assumed to be 
universally qualified. For instance the statement add Zero m == m of (addZero) is actually ∀m.(add Zero m == m).

Deviation from

Textbook

(Programming in 

Haskell 2ed)



Proof Techniques
Mathematical Induction
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We additionally need induction to prove properties about 
recursively defined data structures.

This is the same principle of induction that you have learnt 
in high school and has been used since about 1000 AD.

Revision Exercise: Proove that the sum of the first n natural numbers is n(n+1)/2 using the technique 
of mathematical induction and equational reasoning as you have learnt in high school.

Notice: The idea behind induction is the same as the one behind recursion. 
One could even think that a proof by induction is nothing more than a recursive 
function that returns a proof! For any finite input, one could always “unroll” the 
induction to construct a proof without it, just like we can do for computation 
using recursion!



Proof Techniques
Mathematical Induction
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Revision Exercise: Proove that the sum of the first n natural numbers is 
n(n+1)/2 using the technique of mathematical induction and equational 
reasoning as you have learnt in high school.

https://en.wikipedia.org/wiki/Mathematical_induction

https://en.wikipedia.org/wiki/Mathematical_induction


Proof Techniques
Mathematical Induction
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The induction principle (a.k.a. induction rule) for natural numbers is typically expressed in term of the following 
logical inference rule (a.k.a. proof rule), where P :: Nat → Bool is any property that we want to prove.

P 0     ∀n. ( P n ⇒ P (n+1) )
∀n. P n

Base Case Induction Hypothesis

Main goal to 
be proven

Induction Step

Inductive Case

Subgoals that 
need to be proven 
in order to prove 

the main goal

In the case of the 
revision exercise: P n = ( (0+1+2+…+n == n(n+1)/2 )



Proof Techniques
Structural Induction - Lists
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Natural numbers are not the only recursive structures that allow proof 
by induction. Every recusively defined structure admits an induction 
principle. This more general form of induction is sometimes known as 
structural induction. 

data [a] = [] | a:[a]

where  P xs :: [a] -> Bool is any property on lists that we want to prove.

P []     ∀x xs.(P xs ⇒ P (x:xs))
∀xs. P xs

Base Case Induction Hypothesis

Main goal to 
be proven

Induction Step

Inductive Case
Subgoals that 

need to be proven 
in order to prove 

the main goal

For instance, here is the induction 
principle for lists in Haskell: 

Notice: I have changed the font used on this slide to 
reflect that we are now no more in the realm of 
mathematics, but proving properties about Haskell 
programs.

Notice: I am mixing Haskell and mathematical syntax 
here (there is no ⇒ or ∀ in Haskell). This is definitely not 
kosher, but since I have no way to reason about Haskell 
programs within Haskell, I have no other choice. There 
are extensions to functional programming (for instance, 
Higher-Order Logic (HOL) & dependently typed 
languages such as Agda, Coq and Idris) that combine 
programming and proving. But since we are currently only 
interested in proofs on paper, we will let this slide and 
appeal to our (often imprecise) notion of proof from 
standard mathematics. 

Note: “∀x y. P” is a short form for “∀x.(∀y.P)”



Proof Techniques
Structural Induction - Lists
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Exercise: 

Formally state and prove that the following property holds for all lists in Haskell:

“Concatenating two lists results in a list of length equal to the sum of the concatenated lists” 

You are only allowed use the following properties, as well as the fact that lists are recursively defined data types in your proof:

length [] == 0 (length[])
∀x xs.    length (x:xs) == 1 + length xs (length(:))
∀xs.      [] ++ xs == xs ((++)[])
∀x xs ys. (x:xs) ++ ys == x:(xs++ys) ((++)(:))
∀n.       0 + n == n ((+)0)
∀a b c.   (a + b) + c == a + (b + c) ((+)assoc)
∀x.       (x == x) == True ((==)refl)

Hint: Start with a proof by induction on the first argument of (++), since (++) is defined using recursion on its first argument.

P xs = ∀ys. ( length (xs ++ ys) == length xs + length ys )

P []   ∀x xs.(P xs ⇒ P (x:xs))

∀xs. P xs



Proof Techniques
Structural Induction - Lists
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Exercise: Formally state and prove that the following property holds for all lists in Haskell: 
“Concatenating two lists results in a list of length equal to the sum of the concatenated lists” 

Solution:

Required to Prove (RTP): ∀xs ys. ( length (xs ++ ys) == length xs + length ys )

Proof. Proceed by induction on xs: Let P xs = ∀ys. (length (xs ++ ys) == length xs + length ys) and apply the 
induction rule for lists on P xs.

1. Base Case. RTP:  P []

P []
== {applying definiton of P, choosing a fixed but arbitrary ys}
length ([] ++ ys) == length [] + length ys

== {applying length[]}
length ([] ++ ys) == 0 + length ys

== {applying (++)[]}
length ys == 0 + length ys

== {applying (+)0}
length ys == length ys

== {applying (==)refl}
True

P []   ∀x xs.(P xs ⇒ P (x:xs))

∀xs. P xs

length [] == 0.                 (length[])
∀x xs.    length (x:xs) == 1 + length xs. (length(:))
∀xs.      [] ++ xs == xs ((++)[])
∀x xs ys. (x:xs) ++ ys == x:(xs++ys).     ((++)(:))
∀n.       0 + n == n                      ((+)0)
∀a b c.   (a + b) + c == a + (b + c)      ((+)assoc)
∀x.       (x == x) == True.               ((==)refl)



Proof Techniques
Structural Induction - Lists

14

P []   ∀x xs.(P xs ⇒ P (x:xs))

∀xs. P xs

Solution (continued):

2. Induction Step. RTP:  ∀x xs.(P xs ⇒ P (x:xs))

Choose a fixed but arbitrary x and xs, and assume that following the induction hypothesis P xs holds

∀ys. (length (xs ++ ys) == length xs + length ys) (Induction Hypothesis)

P (x:xs)
== {applying definiton of P, choosing a fixed but arbitrary ys}
length ((x:xs) ++ ys) == length (x:xs) + length ys

== {applying length(:)}
length ((x:xs) ++ ys) == (1 + length xs) + length ys

== {applying ((++)(:))}
length (x:(xs ++ ys)) == (1 + length xs) + length ys

== {applying length(:)}
1 + length (xs ++ ys) == (1 + length xs) + length ys

== {applying Induction Hypothesis}
1 + (length xs + length ys) == (1 + length xs) + length ys

== {applying (+)assoc}
1 + (length xs + length ys) == 1 + (length xs + length ys)

== {applying (==)refl}
True

P xs = ∀ys. (length (xs ++ ys) == length xs + length ys)

Note: This sample proof demonstrates the 
format and the formal rigour I expect to see 
in your exercise solutions and in the exam.

length [] == 0.                 (length[])
∀x xs.    length (x:xs) == 1 + length xs. (length(:))
∀xs.      [] ++ xs == xs ((++)[])
∀x xs ys. (x:xs) ++ ys == x:(xs++ys).     ((++)(:))
∀n.       0 + n == n                      ((+)0)
∀a b c.   (a + b) + c == a + (b + c)      ((+)assoc)
∀x.       (x == x) == True.               ((==)refl)



Proof Techniques
Structural Induction - Trees
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To illustrate that this can be done 
systematically for any algebraic data 
structure, here is the induction 
principle for binary trees in Haskell: 

where  P t :: Tree a -> Bool is any property on trees that we want to prove.

data Tree a = Leaf | Node (Tree a) a (Tree a)

P Leaf     ∀x tl tr.(P tl ⋀ P tr ⇒ P (Node tl x tr))
∀t. P t

Base Case Induction Hypothesis

Main goal to 
be proven

Induction Step

Inductive Case Subgoals that 
need to be proven 
in order to prove 

the main goal

Note: The symbol ⋀ denotes logical “and” (a.k.a. conjunction), and binds tighter than ⇒, 
which denotes logical implication. The universal quantifier ∀ binds the weakest.



Excursion
Proof Rules & Proof Trees
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Induction is not the only concept that can be precisely expressed in terms of proof rules.

Proof rules can also be used to:

• Precisely specify the meaning and use of logical connectives (e.g., ⋀, ⋁, ⌐, ⇒, ∃, ∀)

• Thereby perform other forms of proof such as proof by contradiction, case distinction, …

• Perform proofs involving equational reasoning

• Construct entire proofs (i.e., proof trees) by combining individual proof rules

In standard mathematics, proofs are normally communicated informally as prosa text.

In formal mathematics, proof rules are used to formally specify the structure of a proof upto its finest details.

This makes it possible for a computer to help construct and check the correctness of a proof!



Excursion
Proof Rules & Proof Trees
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64 APPENDIX B. SOLUTIONS

Solution 2.2

1. This argument can be effectively modelled in PC . The individual
propositions can be modelled as follows:

R : It is raining.
C : It is cloudy.

The argument itself can be modelled as the following sequent in PC :

R) C,R ` C

The above sequent is valid. Here is its proof:

R) C,R ` C

R ` R
hyp

R,C ` C
hyp

R) C,R ` C
)hyp

2. The validity of this argument rests on reasoning with quantification (in
this case the concept of ‘all humans’). Quantification cannot be ex-
pressed in PCand therefore this argument cannot be effectively mod-
elled in PC . We could give it a try as follows:

HM : All humans are mortal.
SH : Socrates is human.
SM : Socrates is mortal.

HM , SH ` SM

The above sequent cannot be proved although the logical argument
seems to be correct from an informal point of view.

74 APPENDIX B. SOLUTIONS

Solution 3.2

1. This argument can be effectively modelled in FoPCe. The individual
propositions can be modelled as follows:

H(x) : x is human.
M(x) : x is mortal.

s : Sokrates.

The argument itself can be modelled as the following sequent in FoPCe:

8x.H(x) )M(x), H(s) ` M(s)

The above sequent is valid. Here is its proof:

8x.H(x) )M(x), H(s) ` M(s)

8x.H(x) )M(x), H(s) ` H(s)
hyp 8x.H(x) )M(x),M(s), H(s) ` M(s)

hyp

8x.H(x) )M(x), H(s) )M(s), H(s) ` M(s)
)hyp

8x.H(x) )M(x), [x := s]H(x) )M(x), H(s) ` M(s)
(b=[:=])⇤

8x.H(x) )M(x), H(s) ` M(s)
8hyp

* ([x := s]H(x) )M(x) b= H(s) )M(s))

2. It is intuitively clear that the given inference is valid. However, mod-
elling the first statement can lead to two different predicates. This
is called the problem of multiple generality and occurs when a state-
ment contains more than one quantifier. The statement is therefore
ambiguous. We could model this as follows:

C(x) : x is a cat.
M(x) : x is a mouse.

F (x, y) : x fears y.

The first alternative is to model ‘Some cat is (feared by every mouse)’:

9c.(C(c) ^ 8m.(M(m) ) F (m, c)))

• Here is an example of what a complete set of proof rules for first-order 
logic with equality looks like.

• Proofs are just trees constructed using these proof rules.

• Using such rules, one could implement a data type that can only contain 
valid theorems.

• This is exactly the approach that automated proof assistants use, and is 
the original motivation behind parametric polymorphism (a.k.a. generics).

• One almost never constructs proof trees by hand.

• There are several automated proof assistants to choose from:
Isabelle/HOL, Coq, Adga, Idris, Lean, F*, ACL2, PVS, HOL4, …

12 CHAPTER 2. PROPOSITIONAL CALCULUS

2.8 Summary of PC

To summarise this chapter, here is the syntax and proof rule schemas for PC .
We will later also refer to PC as the propositional subset of our mathematical
language.

P ::= ? | > | ¬P | P ^ P | P _ P | P ) P | P , P

> b= ¬? (b=>)

P _Q b= ¬(¬P ^ ¬Q) (b=_)

P )Q b= ¬P _Q (b=))

P ,Q b= (P )Q) ^ (Q) P ) (b=,)

H, P ` P
hyp

H ` Q

H, P ` Q
mon

H ` P H, P ` Q

H ` Q
cut

H,? ` P
?hyp

H ` > >goal
H,¬P ` ?
H ` P

contr

H, P ` ?
H ` ¬P ¬goal H ` P

H,¬P ` Q
¬hyp

H ` P H ` Q

H ` P ^Q
^goal

H, P,Q ` R

H, P ^Q ` R
^hyp

H ` P

H ` P _Q
_goal1

H ` Q

H ` P _Q
_goal2

H, P ` R H, Q ` R

H, P _Q ` R
_hyp

H, P ` Q

H ` P )Q
)goal

H ` P H, Q ` R

H, P )Q ` R
)hyp

H ` P )Q H ` Q) P

H ` P ,Q
,goal

H, P )Q,Q) P ` R

H, P ,Q ` R
,hyp

Operator binding strength (decreasing): ‘¬’, ‘^’, ‘_’, ‘)’, ‘,’.

8 CHAPTER 1. FIRST-ORDER PREDICATE CALCULUS

1.10 Summary of FoPCe

To summarise this chapter, here are the additional syntactic constructs and
proof rule schemas that we have added to PC (whose summary appears in
§??) to obtain the formal language and theory FoPCe.

P ::= . . . | 8x.P | 9x.P | E = E | R( ~E)

E ::= x | f( ~E)

9x.P b= ¬8x.¬P (b=9)

8x.P b= 8y.[x := y]P if (y nfin P ) (b=8↵)

9x.P b= 9y.[x := y]P if (y nfin P ) (b=9↵)

H ` P
H ` 8x.P 8goal (x[nfin H)

H, 8x.P, [x := E]P ` Q
H, 8x.P ` Q

8hyp

H ` [x := E]P
H ` 9x.P 9goal H, P ` Q

H, 9x.P ` Q 9hyp (x[nfin H [ {Q})

H ` E = E
=goal

H, E = F ` [x := F ]P

H, E = F ` [x := E]P
=hyp

Summary of Syntax, Syntactic Equivalences and Rule Schemas
Introduction to Formal Proof and the Lambda Calculus

Version: 01.40

Theory basicPC

P ::= ? | ¬P | P ^ P

H, P ` P
hyp

H ` Q

H, P ` Q
mon

H ` P H, P ` Q

H ` Q
cut

H,? ` P
?hyp

H,¬P ` ?
H ` P

contr
H, P ` ?
H ` ¬P ¬goal

H ` P
H,¬P ` Q

¬hyp H ` P H ` Q

H ` P ^Q
^goal H, P,Q ` R

H, P ^Q ` R
^hyp

Theory PC
Identical to basicPC with the following additions:

P ::= . . . | > | P _ P | P ) P | P , P

> b= ¬? (b=>)

P _Q b= ¬(¬P ^ ¬Q) (b=_)

P )Q b= ¬P _Q (b=))

P ,Q b= (P )Q) ^ (Q) P ) (b=,)

H ` > >goal H ` P
H ` P _Q

_goal1 H ` Q

H ` P _Q
_goal2

H, P ` R H, Q ` R

H, P _Q ` R
_hyp H, P ` Q

H ` P )Q
)goal

H ` P H, Q ` R

H, P )Q ` R
)hyp

H ` P )Q H ` Q) P

H ` P ,Q
,goal

H, P )Q,Q) P ` R

H, P ,Q ` R
,hyp

Operator precedence:

In order of increasing strength: ‘,’, ‘)’, ‘_’, ‘^’, ‘¬’.

Theory basicFoPCe

Identical to PC with the following additions:

P ::= . . . | 8x.P | E = E | R( ~E)
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• In computer science, proof rules are used to formally specify the type 
systems used in programming languages.

• Here is an example of what a complete set of proof rules for the simply 
typed lambda calculus, and the polymorphic lambda calculus look like.

• The proof rules for type systems have a striking simmilarity to those of 
mathematical logic.

• This led to the discovery of a deep connection between computation and 
proof, known as the Curry-Howard Correspondence, a.k.a. the PAT 
interpretation, which is used in systems such as Agda, Coq and Idris.

• "PAT" Interpretation: Propositions As Types, Proofs As Terms

(ii) A statement M : � is derivable from a basis �, notation

� ` M : �

(or � `�! M : � if we wish to stress the typing system) if there is a derivation
of M : � in which all non-cancelled assumptions are in �.

(iii) We use ` M : � as shorthand for ; ` M : �.

2.4. Example. Let � 2 T. Then ` �fx.f(fx) : (�!�)!�!�, which is
shown by the following derivation.

f : �!� (2)

f : �!� (2) x : � (1)

fx : �

f(fx) : �
(1)

�x.f(fx) : �!�
(2)

�fx.f(fx) : (�!�)!�!�

The indices (1) and (2) are bookkeeping devices that indicate at which appli-
cation of a rule a particular assumption is being cancelled.

The administration of assumptions is a global matter. Therefore systems
like the above are usually recast in a sequent style focussing on derivation of
typing judgements rather than typing statements. This is done in the following.
Below, �, x:� is shorthand for � [ {x:�}.

2.5. Definition. The sequent-style derivation system for �!-Curry looks as
follows.

�, x:� ` x : �

� ` M : �!⌧ � ` N : �

� ` MN : ⌧
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� ` �x.M : �!⌧

From the shape of the deduction rules it can easily be seen that every
subterm of a typable term is typable as well.

In order to show that typing is preserved during computation we need the
following substitution property.

2.6. Lemma.

�, x:� ` M : ⌧
� ` N : �

�
) � ` M [x := N ] : ⌧.

2.7. Subject Reduction Theorem.

� ` M : �
M !!� M 0

�
) � ` M 0 : �.
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2.15. Theorem. The �!-definable functions (w.r.t. N↵, n) are exactly the

conditional multivariate polynomials.

3. Second-order Typed Lambda Calculus

The polymorphic lambda calculus �2 is due to Girard (1972) and Reynolds
(1974). Polymorphism involves the internalization of genericity: rather than
stating, for example,

` �x.x : �!� for all �

the quantification is put into the type of the �-term:

` �x.x : 8↵.↵!↵.

Allowing 8-quantification in input types of functions (rather than just on the
outermost level, like in the above example) leads to a system which is essentially
more powerful than the simply typed �-calculus. For example, in the type
assignment

` �x.xx : (8↵.↵!↵)!(�!�)

the genericity of the input parameter x is exploited by using it as an object of
type (�!�)!(�!�) at the first occurrence and as an object of type �!� at
the second.

3.1. Definition. (i) The set of polymorphic types T = T(�2) is defined by

T ::= V | T!T | 8V.T.

(ii) For each type � 2 T, the set of free type variables TV(�) is defined in
the obvious way.

The Curry style system

3.2. Definition. The derivation rules for �2-Curry extend those for �! as
follows.

�, x:� ` x : �

� ` M : �!⌧ � ` N : �

� ` MN : ⌧

�, x:� ` M : ⌧

� ` �x.M : �!⌧

� ` M : 8↵.�

� ` M : �[↵ := ⌧ ]
� ` M : �

� ` M : 8↵.�

The last rule only applies if the type variable ↵ does not occur free in any type
in �.

The system �2-Curry has the subject reduction property.
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Summary of Syntax, Syntactic Equivalences and Rule Schemas
Introduction to Formal Proof and the Lambda Calculus

Version: 01.40

Theory basicPC

P ::= ? | ¬P | P ^ P

H, P ` P
hyp

H ` Q

H, P ` Q
mon

H ` P H, P ` Q

H ` Q
cut

H,? ` P
?hyp

H,¬P ` ?
H ` P

contr
H, P ` ?
H ` ¬P ¬goal

H ` P
H,¬P ` Q

¬hyp H ` P H ` Q

H ` P ^Q
^goal H, P,Q ` R

H, P ^Q ` R
^hyp

Theory PC
Identical to basicPC with the following additions:

P ::= . . . | > | P _ P | P ) P | P , P

> b= ¬? (b=>)

P _Q b= ¬(¬P ^ ¬Q) (b=_)

P )Q b= ¬P _Q (b=))

P ,Q b= (P )Q) ^ (Q) P ) (b=,)

H ` > >goal H ` P
H ` P _Q

_goal1 H ` Q

H ` P _Q
_goal2

H, P ` R H, Q ` R

H, P _Q ` R
_hyp H, P ` Q

H ` P )Q
)goal

H ` P H, Q ` R

H, P )Q ` R
)hyp

H ` P )Q H ` Q) P

H ` P ,Q
,goal

H, P )Q,Q) P ` R

H, P ,Q ` R
,hyp

Operator precedence:

In order of increasing strength: ‘,’, ‘)’, ‘_’, ‘^’, ‘¬’.

Theory basicFoPCe

Identical to PC with the following additions:

P ::= . . . | 8x.P | E = E | R( ~E)

E ::= x | f( ~E)

8x.P b= 8y.[x := y]P if (y nfin P ) (b=8↵)

H ` P
H ` 8x.P 8goal (x[nfin H)

H, 8x.P, [x := E]P ` Q

H, 8x.P ` Q
8hyp

H ` E = E
=goal

H, E = F ` [x := F ]P

H, E = F ` [x := E]P
=hyp

Theory FoPCe

Identical to basicFoPCe with the following additions:

P ::= . . . | 9x.P

9x.P b= ¬8x.¬P (b=9)

9x.P b= 9y.[x := y]P if (y nfin P ) (b=9↵)

H ` [x := E]P

H ` 9x.P 9goal H, P ` Q

H, 9x.P ` Q 9hyp (x[nfin H [ {Q})

Operator precedence:

In order of increasing strength: ‘8’ and ‘9’, both of which bind with the same strength,

followed by ‘,’, ‘)’, ‘_’, ‘^’, ‘¬’, ‘=’.
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Key Idea of FP: Denotative Language / Semantics
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Central passages:

“The commonplace expressions of arithmetic and algebra have a certain simplicity
that most communications to computers lack. In particular, (a) each expression has 
a nesting subexpression structure, (b) each subexpression denotes something 
(usually a number, truth value or numerical function), (c) the thing an expression 
denotes, i.e., its "value", depends only on the values of its sub-expressions, not on 
other properties of them.”

“The word "denotative" seems more appropriate than non-procedural, declarative or 
functional. The antithesis of denotative is "imperative”.”

“functional programming has little to do with functional notation.”

“The question arises, do the idiosyncracies reflect basic logical properties of the 
situations that are being catered for? Or are they accidents of history and personal 
background that may be obscuring fruitful developments?”

“we must think in terms, not of languages, but of families of languages. That is to say 
we must systematize their design so that a new language is a point chosen from a 
well-mapped space, rather than a laboriously devised construction.”

Reminder



Excursion
The Lambda Cube
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Orign:
λ→ : Simply typed lambda calculus
Terms may only depend on Terms
Curry-Howard correspondence for λ→: Propositional calculus restricted to only use implication.

Going up (2):
λ2 : System F, second-order lambda calculus
Terms may depend on Types
(polymorphism, e.g. (Church-style) λα:*.λx:α.x : ∀α.α→α , or (Curry-style) λx.x:∀α.α→α)
Curry-Howard correspondence for λ2: fragment of second-order intuitionistic logic that uses only universal 
quantification.

Going inwards (ω):
Types may depend on Types
(type operators, e.g. "List α" is a type, where List is a type operator with kind * → *)
Not very interesting in isolation.
Normally combined with λ2 (System F) to give λω (System Fω) (a variant of this (System FC) is used in Haskell)
Curry-Howard correspondence for λω (System Fω): Higher-Order Logic

Going rightwards (Π, or P):
Types may depend on values
(dependent types, e.g. "FloatList 3" is a type denoting a list of floats with length 3, where Floatlist : Nat→* )
λΠ : also called λP, LF
Curry-Howard correspondence for λΠ: A form of predicate calculus that only uses implication and universal 
quantification.

Richest calculus of all 8:
λΠω : Calculus of Constructions (CC, CoC, λC)

UIFSF BSF UXP CJH EJ੖FSFODFT CFUXFFO UIFTF UXP
TZTUFNT�

'JSTU
 SF੗OFNFOU UZQFT BSF MJNJUFE UP EFDJEBCMF
MPHJDT UIBU JT XIZ UIFZ DBO P੖FS NVDI NPSF BV�
UPNBUJPO BOE UZQF JOGFSFODF <+IB>� 3F੗OFNFOU
UZQF TZTUFNT POMZ BMMPX WFSJ੗DBUJPO DPOEJUJPOT
UIBU DBO CF Fਖ਼DJFOUMZ WBMJEBUFE CZ B 4BUJT੗BCJM�
JUZ NPEVMP UIFPSJFT 	4.5
 4PMWFS <74++��>� य़JT
BVUPNBUFT UIF TPMWJOH PG UIF DPOTUSBJOUT UP DIFDL
XIFUIFS B QSPHSBN JT XFMM� PS JMM�GPSNFE� %FQFO�
EFOU UZQFT
 PO UIF PUIFS IBOE
 OFFE QSPPG UFSNT BT
DBO CF TFFO JO BO JOTFSUJPO�TPSU JNQMFNFOUBUJPO
JO *ESJT <'PT>� य़JT JNQMFNFOUBUJPO DPOUBJOT B MPU
PG UIFTF QSPPG UFSNT
 UIBU BDUVBMMZ MPPL MJLF QSP�
HSBN DPEF
 UP WFSJGZ UIBU UIF JOTFSUJPO TPSU BDUV�
BMMZ HJWFT CBDL B TPSUFE MJTU BOE DPOUBJOT UIF TBNF
FMFNFOUT UIBU XFSF QBTTFE BT JOQVUT� य़F JNQMF�
NFOUBUJPO JO -JRVJE)BTLFMM XJUI SF੗OFNFOU UZQFT
JT NVDI TIPSUFS <+IB>�

4FDPOE
 SF੗OFNFOU UZQFT KVTU IBWF UIFJS QSFE�
JDBUF UIFZ EFQFOE VQPO� 'PS {n : int | n >
42} UIF UZQF KVTU DPOUBJOT BMM WBMVFT UIBU BSF CJH�
HFS UIBO ��� 8JUI EFQFOEFOU UZQFT
 ZPV DBO XSJUF
BOZUIJOH JO B UZQF UIBU ZPV DBO OPSNBMMZ XSJUF JO
BO FYQSFTTJPO� 8F DBO DPNQVUF B UZQF BT XF TBX
JO UIF JOUSPEVDUJPO XJUI UIF isSingleton GVOD�
UJPO UIBU JT BHBJO TIPXO JO -JTUJOH ���

� isSingleton : Bool -> Type
� isSingleton True = Nat
� isSingleton False = List Nat

Listing 12. Function isSingleton in Idris that computes a type

and returns it. This cannot be done with refinement types.

��� 1PMZNPSQIJTN
4PNF EFQFOEFOU UZQF GFBUVSFT DBO CF NPEFMFE

XJUI QPMZNPSQIJTN� 1PMZNPSQIJTN BMMPXT VT UP
XSJUF GVODUJPOT UIBU XPSL GPS EJ੖FSFOU UZQFTۘXF
XSJUF UFSNT UIBU BCTUSBDU PWFS UZQFT� 'PS EFQFOEFOU
UZQFT
 XF XSJUF UZQFT UIBU EFQFOE PO UFSNTۘUZQFT
BCTUSBDU PWFS UFSNT� य़JT DBO BMTP CF TFFO JO UIF λ�
DVCF JO 'JHVSF � CZ #BSFOESFHU <#BS��>� 1PMZNPS�
QIJTN JT SFQSFTFOUFE CZ λ2 BOE EFQFOEFOU UZQFT
CZ λΠ PO B EJ੖FSFOU BYJT PG UIF DVCF� य़JT NFBOT
UIFZ IBWF BMNPTU OPUIJOH JO DPNNPO�

1PMZNPSQIJTN BMMPXT B GVODUJPO UP CFIBWF EJG�
GFSFOUMZ PO EJ੖FSFOU UZQFT� 0OF DBO VTF GVODUJPO

PWFSMPBEJOH TP UIF GVODUJPO CFIBWFT EJ੖FSFOUMZ
GPS EJ੖FSFOU UZQFT BOE XF FWFO HFU B EJ੖FSFOU SF�
UVSO UZQF EFQFOEJOH PO UIF QBTTFE UZQF BT TIPXO
JO -JTUJOH ���

� public int foo(char c) {
� return (int) c;
� }
�
� public String foo(int i) {
� return Integer.toString(i);
� }

Listing 13. Ad hoc polymorphism in Java. We can differentiate

between two types and depending on the type we return a different

type. These are however two completely different functions.

8F DPVME BMTP IBWF UIF JNQMFNFOUBUJPO CF�
IBWF EJ੖FSFOUMZ GPS EJ੖FSFOU UZQFT CZ TVCUZJOH�
य़JT JT IPXFWFS FWFSZUIJOH XF DBO BDIJFWF XJUI
QPMZNPSQIJTN� 8F DBOOPU DPNQVUF UZQFT BOE SF�
UVSO UZQFT UIBU EFQFOE PO B WBMVF� /PUJDF UIBU B
GVODUJPO UIBU SFUVSOT B Vector<int> XJUI B TQF�
DJ੗D MFOHUI EPFT OPU DPNQVUF B UZQF� &JUIFS UIF
UZQF JT QBTTFE FYQMJDJUFMZ PS JU JT TUBUJD BOE OPU EF�
QFOEJOH PO BOZ QBTTFE BSHVNFOU UZQF BOE XF SF�
UVSO BO JOTUBODF PG UIJT UZQF BOE OPU UIF UZQF JU�
TFMG�

λω λΠω

λ2 λΠ2

λω λΠω

λ→ λΠ

Figure 1. λ-cube by Barendregt showing different abstractions

which are in the end just features that a programming language can

have [Bar91]

�

3FGFSFODFT
<"NS��> $ISJTUPQI "NSFJO� 4JNQMZ 5ZQFE -BNCEB $BMDVMVT XJUI 1BSBNFUSJD 1PMZNPSQIJTN
 �����
<#BS��> )FOESJL 1JFUFS #BSFOESFHU� *OUSPEVDUJPO UP HFOFSBMJ[FE UZQF TZTUFNT� +� 'VODU� 1SPHSBN�


�	�
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 �����
<#$"4> &EXJO #SBEZ
 %BWJE $ISJTUJBOTFO
 BOE "INBE 4BMJN "M�4JCBIJ� *ESJT 7FDU *N�
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MJOF� BDDFTTFE ���/PWFNCFS�����>�
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<#SB> &EXJO #SBEZ� !FEXJOCSBEZ PO 5XJ॒FS� https://twitter.com/edwinbrady/status/
431415892233428992� <0OMJOF� BDDFTTFE ���0DUPCFS�����>�

<$PN> य़F *ESJT $PNNVOJUZ� 5ZQFT BOE 'VODUJPOT ۘ *ESJT EPDVNFOUBUJPO� http://docs.
idris-lang.org/en/latest/tutorial/typesfuns.html� <0OMJOF� BDDFTTFE ���
/PWFNCFS�����>�

<%JP> -PVJT %JPOOF� #PPTU�)BOB� 6TFS .BOVBM� http://www.boost.org/doc/libs/1_61_0/
libs/hana/doc/html/index.html� <0OMJOF� BDDFTTFE ���%FDFNCFS�����>�
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<(BN> #FO (BNBSJ� ()$ ����� JT BWBJMBCMF� https://ghc.haskell.org/trac/ghc/blog/
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��

Note: These are from personal notes that I have not 
checked myself. Do not quote me on this.



Reasoning about Programs
Going further
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• Chapter 16 of the textbook contains some more examples 
of proofs, as well as a section on proving the correctness 
of a compiler.

• Chapter 17 of the textbook goes even further by showing 
how the implementation of a compiler can be calculated 
directly from the statement of its correctness.

• Try using an automated proof assistant such as 
Isabelle/HOL, or a dependently typed programming 
language such as Agda, Idris, or Coq.

• Try to build your own proof assistant in Haskell!



Selected Work
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Gotthard Base Tunnel 
Safety-relevant Functions “Freihaltung”, “Überfullverhinderung”
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Gotthard Base Tunnel 
Safety-relevant Functions “Freihaltung”, “Überfullverhinderung” 
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Inspiration from:
• Refinement calculus, Invariant preservation
• Inductively defined sets



Gotthard Base Tunnel 
Safety-relevant Functions “Freihaltung”, “Überfullverhinderung” 
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Are we being too paranoid?
Will these functions ever be needed?



Lambda Calculus Calculator
https://lambdacalc.io
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https://lambdacalc.io/


Lambda Calculus Calculator
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Type-Based API Search
https://typesearch.dev
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https://typesearch.dev/


Hoogle for the hungry masses
Type-based API Search for All – typesearch.dev
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Hoogle for the hungry masses
Type-based API Search for All – typesearch.dev

19



Hoogle for the hungry masses
Type-based API Search for All – typesearch.dev
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• Targeted at mainstream 
(typed OO) languages

• Inspiration: Curry-Howard Isomorphism
• Type Search is Proof Search!
• AdHoc à General
• Code synthesis also possible

• TyDe Workshop ICFP 2024 (ACM)



CodePanorama
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CodePanorama
The 10 ms code review

22
ICPC 2022 (ACM/IEEE)



CodePanorama
The 10 ms code review
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https://github.com/google/guava

https://github.com/google/guava


CodePanorama
The 10 ms code review
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https://github.com/haskell-servant/servant
Highlights: Change Frequency 

https://github.com/haskell-servant/servant


Robotics
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Robotic Artwork
Joint work with artis duo Pors & Rao
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• “Untitled” https://www.youtube.com/watch?v=RlDoAHKzZu0&t=110s

• Using Functional Reactive Programming (FRP) 
to improve developer experience and control

• FARM ICFP 2024
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ZuriHac
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ZuriHac
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The biggest Haskell community event in the world: a three-day grassroots coding 
festival co-organized by the Zürich Friends of Haskell and the OST Eastern 

Switzerland University of Applied Science.



ZuriHac
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• > 400 Participants

• 50% Europe, 35% CH, 15% Overseas

• 75% Industry, 25% Academia

• Organizing since 2017 at the OST (Before: Google, ETHZ, Better AG)

• Main aim: To promote and contribute to the state of the art in principled computer programming.

• Focus: Functional Programming and Haskell

• But not only...

• Applications: FRP, Build Systems, SE Practices, Metaprogramming, Hardware Design, Verification...

• Other Programming Languages: Agda, Verse, Racket, Dhal, Nix, ...

• Fundamental Concepts: Type Systems, PL Semantics, Logik, Category Theory, Combinators, ...



Highlights ZuriHac 2024
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• Keynotes (others were great too)

• Low level: “Functional Hardware Description and verification” 
(Mary Sheeran)

• High level: “Haskell in Space”: Runtime verification at NASA 
(Ivan Perez)

• With both feet on the ground: “Making people dance with Haskell”: 
(Alex McLean)

• 3 Advanced tracks: FRP, Generic Programming, Dependent Types

• Beginner Track with 30 Participants (Eliane Schmidli)

• For some, just too overwhelming: "I just arrived in Paris and noticed that I may have 
forgot my luggage at the OST. Could you please take a look"



https://zurihac.info
https://zfoh.ch/zurihac2025/

The biggest Haskell community event in the world: a three-day grassroots coding festival 
co-organized by the Zürich Friends of Haskell and the OST Eastern Switzerland University 

of Applied Science.

Saturday 7 June — Monday 9 June 2025
Rapperswil, Switzerland

Registration is open and free.

Come talk to me 

if you have any 

questions –

Farhad Mehta

https://zurihac.info/
https://zfoh.ch/zurihac2025/

