OST

Eastern Switzerland
University of Applied Sciences

INTRODUCTION
FARHAD MEHTA

Prof. Dr. Farhad Mehta
Department of Computer Science

Who am [7?

First name: Farhad

Last name: Mehta

Born: Mumbal, India

Grew up in Dubai
- Lived in Zurich, Delhi, Munich, Paris
- In Switzerland since 2004

- Married, 2 children

Background

Education

Dr. Sc. Computer Science (ETH Zurich 2008)
M.Sc. Informatik (TU Munich 2004)

B.Tech Computer Science & Engineering (IIT Delhi 2001)

Experience

1997 Allied Enterprises, Dubai (IT Support)
2000 DRDO, Bangalore (Research: IT Security)
2001 INRIA, Paris (Research: Linguistics & Compilers)
2002 - 2004 TU Munich (Teaching & Research: Logic & Software Engg.)
2004 - 2008 ETH Zurich (Teaching & Research: Formal Methods & Software Engg.)
2008 - 2014 = Systransis AG (Development, Management, Marketing, ...)
2013 - 2014 | Part-time: Teacher at the Bildungszentrum ZUrichsee (BZZ)

Since Feb 2015 Professor for Computer Science at the OST

Interests

Software Engineering, Programming Languages, Functional Programming, Algorithms,
Safety-critical Systems, Formal Methods, Logic.

But also: Electronics, Usability, Didactics.

| currently teach the following OST courses:

» SE Practices 1

» SE Project

* Functional Programming

* MSE EVA “Programming Languages”

» MSE Module “Advanced Prog. Paradigms”
* MAS SE Module “Functional Programming”
+ CAS SW Testing Module “Unit Testing”

| have taught the following courses in the past:
+ Software Engineering 1

+ Software Engineering 2

* Engineering Project

» Programming Languages & Formal Methods
+ Distributed Systems

» Compiler design

* Formal Methods and Functional Prog. (ETHZ)
* Informatik fur nicht-Informatiker (ETHZ)

* Logik (ETHZ)

| supervise:

» Semester Projects

» Bachelor Thesis Projects
* Master Semester Projects
» Master Thesis Projects

OST

Eastern Switzerland
University of Applied Sciences

FUNCTIONAL PROGRAMMING
AND PROOF

Prof. Dr. Farhad Mehta
Department of Computer Science

Reasoning about Programs
Motivation

Till now, we have been able to:
* Formulate some interesting properties
« Test them using property-based testing (Quickcheck)

But testing can only show the presence of faults, never their absence.

How we can prove that our programs always satisfy some given properties?

We will now see how this is possible using techniques that you are already
familiar with from high-school math!

Reasoning about Programs
Why is this important?

* Our luck at producing programs that work will run out ©

« Formal Proof gives us the security to program in a way that is
« Scalably Reliable
« Scalably Efficient

* |t forces us to keep our programs simple and elegant

|t makes it even possible to ‘derive’ correct programs from their properties

« There is a deep connection between proofs and programs:
"PAT" Interpretation: Propositions As Types, Proofs As Terms

Reasoning about Programs
Why is this relevant to Functional Programming?

Functional programs are particularly amenable to sound and simple reasoning

This is their superpower, and is what makes them easier to work with for
humans and machines

* Functional Programming and Formal Proof share a very rich legacy

« Remember: ML was originally the “Meta Language” for a theorem prover

« Functional Programming is often the gateway drug to other formal methods

Reasoning about Programs
Lesson Goals

All participants are able to
« State relevant correctness properties for functional programs
* Provide counter-examples of program properties that do not hold

« Perform formal proofs of program properties that hold using equational
rewriting and induction

Proof Techniques
Equational Reasoning

We have already seen this many times in math, and since the start of this course.

sum [1..5] Vx.qsort [x] == [X]

== { applying [..] }
sum [1,2,3,4,5]

== { applying sum }
1+2+3+445

== { applying + }

15

gsort [x]
== {++applying qgsort }

gsort [] ++ [x] ++ gsort []
== { applying gsort }

[1 ++ [x] ++ []
== { applying ++ }

[x]

totalWordCount :: [String] -> Int

totalWordCount =
\strs -> foldr (+) © (map length (map words strs))

== {Definition of (.), nconversion,map f . map g == map (f . g)}
foldr (+) © . map (length . words)

== {applying “foldr f v . map g = foldr (f.g) v"}

foldr ((+) . length . words) ©

This is and will remain the main workhorse for our proofs.

Note: Mathematitians are often cavalier and inconsiderate, and often overestimate their
readers’ patience. In this course we will be extra careful and explicit. Each step of a proof
may only use a definition, or a property that we have already proven. The justification for

each step needs to reflect this.

Proof Techniques Dt
q 6%9 /))/;)oo'f %
. . . % %,
2
Equational Reasoning — A note on the form of proofs used in the text book %%
The textbook uses the ‘=" symbol We will use the ‘==" symbol instead to be it is often o o stat d simplifv both sid
in between lines of a derivation: more consistent with the notation of IS Often easier 1o state and SImpiity both SIAes
. .) C of the equality that we are trying to prove in each
equality used in Haskell, since ‘=" in Haskell . ‘ e
is used for definitions. We will also be more step, thereby avoiding awkward ‘unapplying
add :: Nat -> Nat -> Nat - . an . steps. We will also underline the sub terms that
add Zero m=m explicit on which properties we use in each : o
_ get rewritten at each step for more clarity:
add (Succ n) m = Succ (add n m) step of the proof:
add Zero (.add y 2) add Zero m ==m (addzero) add Zero (add y z) == add (add Zero y) z
= { applying the outer add } == { applying addser }
add y z add y z == add (add Zero y) z
— { unapplying add } add Zero (add y z) == { applying addze, }
add (add Zero y) z == { applying addzer } add y z == add y z
add y ¢z . e { (==)r*efl }
== { unapplying addzer, } True
add (add Zero y) z
Note: All undefined variables that occur in properties to be assumed or proven are by convention assumed to be
universally qualified. For instance the statement add Zero m == m of (add,..,) is actually vm. (add Zero m == m).
The example used on this slide is the proof of add Zero (add y z) == add (add Zero y) z
using the definiton of add on page 233 of “Programming in Haskell 2ed” by Graham Hutton 7

Proof Techniques)
Mathematical Induction G

*Q Y Wt b
P iy g e mycin

recursively defined data structures.

AL-KARAJI

c. 953 to 1029

We additionally need induction to prove properties about |

This is the same principle of induction that you have learnt
in high school and has been used since about 1000 AD.

Revision Exercise: Proove that the sum of the first n natural numbers is n(n+1)/2 using the technique
of mathematical induction and equational reasoning as you have learnt in high school.

Notice: The idea behind induction is the same as the one behind recursion.
One could even think that a proof by induction is nothing more than a recursive
function that returns a proof! For any finite input, one could always “unroll” the
induction to construct a proof without it, just like we can do for computation
using recursion!

Proof Technigques
Mathematical Induction

Revision Exercise: Proove that the sum of the first n natural numbers is
n(n+1)/2 using the technique of mathematical induction and equational
reasoning as you have learnt in high school.

Proposition. Foreveryn € N, 04+1+2+:+-+n= ﬂ(njl).

__ n(n+1)

Proof. Let P(n) be the statement 0 +1+2+ -+ +n 5 - We give a proof by induction on n.

Base case: Show that the statement holds for the smallest natural number n = 0.

0
P(0) is clearly true: 0 = w .
Induction step: Show that for every k > 0, if P(k) holds, then P(k + 1) also holds.

Assume the induction hypothesis that for a particular , the single case n = k holds, meaning P(k) is true:

k(k+1
T P .
2
It follows that:
k(k+ 1)
(0+1+2+---+k)+(k+1)=T+(k+l).

Algebraically, the right hand side simplifies as:

k(k.2+ - . k(k + 1) ; 2(k + 1)
_ (k+1)(k+2)
e
(k+1)((k+1)+1)
> ;

Equating the extreme left hand and right hand sides, we deduce that:

(k+1)((k+1)+1)
5 .

That is, the statement P(k + 1) also holds true, establishing the induction step.

0+14+2+---+k+(k+1)=

Conclusion: Since both the base case and the induction step have been proved as true, by mathematical
induction the statement P(n) holds for every natural number n. Q.E.D.

https://en.wikipedia.org/wiki/Mathematical_induction

https://en.wikipedia.org/wiki/Mathematical_induction

Proof Technigques
Mathematical Induction

The induction principle (a.k.a. induction rule) for natural numbers is typically expressed in term of the following
logical inference rule (a.k.a. proof rule), where P :: Nat — Bool is any property that we want to prove.

Inductive Case

Subgoals that

Base Case Induction Hypothesis Induction Step need to be proven
in order to prove
P 0 v (P P (1)) the main goal
v P Main goal to
n . n be proven

In the case of the Pn=((0+1+42+...4n == n(nt+1)/2)

revision exercise:

10

Proof Technigques
Structural Induction - Lists

Natural numbers are not the only recursive structures that allow proof
by induction. Every recusively defined structure admits an induction
principle. This more general form of induction is sometimes known as

structural induction.

For instance, here is the induction
principle for lists in Haskell:

data [a] = [] | a:[a]

4

Notice: | have changed the font used on this slide to
reflect that we are now no more in the realm of
mathematics, but proving properties about Haskell
programs.

Notice: | am mixing Haskell and mathematical syntax
here (there is no = or V in Haskell). This is definitely not
kosher, but since | have no way to reason about Haskell
programs within Haskell, | have no other choice. There
are extensions to functional programming (for instance,
Higher-Order Logic (HOL) & dependently typed
languages such as Agda, Coq and Idris) that combine
programming and proving. But since we are currently only
interested in proofs on paper, we will let this slide and
appeal to our (often imprecise) notion of proof from
standard mathematics.

Note: “vx y. P”is a short form for “¥x. (Vy.P)”

Base Case

P[]

V' X

Inductive Case

Induction Hypothesis Induction Step

Xs.(P xs = P (x:xs))

where P xs

Vxs. P Xs

Subgoals that
need to be proven
in order to prove
the main goal

Main goal to
be proven

[a] -> Bool is any property on lists that we want to prove.

11

PrOOf TeChanueS P[] VX xs.(P xs = P (x:xs))
Structural Induction - Lists Vxs. P Xs

Exercise:
Formally state and prove that the following property holds for all lists in Haskell:
“Concatenating two lists results in a list of length equal to the sum of the concatenated lists”

You are only allowed use the following properties, as well as the fact that lists are recursively defined data types in your proof:

length [] == (lengthyy)
VX XS. length (x:xs) == 1 + length xs (length.))
VXs. [] ++ Xs == Xs ((++)[7)
VX XS ys. (X:XS) ++ ys == X:(XS++ys) ((++) ()
vn. O +n==n ((+)g)
Va b c. (a+b)+c==2a+ (b+c) ((+)acc0c)
vX. (x == x) == True ((==)rer1)

Hint: Start with a proof by induction on the first argument of (++), since (++) is defined using recursion on its first argument.

P xs = Vys. (length (xs ++ ys) == length xs + length ys)

length [] == @. (lengthyy)

. VX Xs. length (x:xs) == 1 + length xs. (length(:)) P[] VX xs.(P xs = P (x:xs))
PrOOf TeChnlq ueS VXS. [] ++ xs == xs ((+9)m)
VX XS ys. (X:XS) ++ ys == X:(XS++ys). ((++) (1)) Vxs. P Xxs
. . vn. © + n==n ((+)o)
Structural Induction - ListS vsc @b sc=arora (o
vX. (x == x) == True. ((==)ref1)

Exercise: Formally state and prove that the following property holds for all lists in Haskell:
“Concatenating two lists results in a list of length equal to the sum of the concatenated lists”

Solution:
Required to Prove (RTP): vxs ys. (length (xs ++ ys) == length xs + length ys)

Proof. Proceed by induction on xs: Let P xs = Vys. (length (xs ++ ys) == length xs + length ys) and apply the
induction rule for lists on P xs.

1. Base Case. RTP: P []

P11
== {applying definiton of P, choosing a fixed but arbitrary ys}
length ([] ++ ys) == length [] + length ys
== {applying length}
length ([] ++ ys) == @ + length ys
== {applying (++);}
length ys == @ + length ys
== {applying (+)o}
length ys == length ys
== {applying (==)rer}
True

13

length [] == @. (lengthyy)

. VX Xs. length (x:xs) == 1 + length xs. (length(:)) P[] VX xs.(P xs = P (x:xs))
PrOOf TeChnlq ueS vxs. [] ++ xs == xs ((+9)m)
VX XS YS. (X:XS) ++ ys == X:(XS++ys). ((++) 1)) Vxs. P Xxs
. . vn. @ +n==n ((+)e)
Structural Induction - Lists = wee 4o cmaioro (i
vX. (x == x) == True. ((==)ref1) P xs = VYys. (length (xs ++ ys) == length xs + length ys)

Solution (continued):
2. Induction Step. RTP: ¥x xs.(P xs = P (x:Xs))
Choose a fixed but arbitrary x and xs, and assume that following the induction hypothesis P xs holds

Vys. (length (xs ++ ys) == length xs + length ys) (Induction Hypothesis)

P (x:xs)
== {applying definiton of P, choosing a fixed but arbitrary ys}

length ((x:xs) ++ ys) length (x:xs) + length ys
== {applying length .}

length ((x:xs) ++ ys)
== {applying ((++),)}

length (x:(xs ++ ys))
== {applying length .}

1 + length (xs ++ ys) == (1 + length xs) + length ys
== {applying Induction Hypothesis}

1 + (length xs + length ys) == (1 + length xs) + length ys Note: This sample proof demonstrates the
== {applying (+) } format and the formal rigour | expect to see
ass0c in your exercise solutions and in the exam.

(1 + length xs) + length ys

(1 + length xs) + length ys

1 + (length xs + length ys) == 1 + (length xs + length ys)

== {applying (==) eq1}
True

14

Proof Technigques
Structural Induction - Trees

To illustrate that this can be done
systematically for any algebraic data

data Tree a = Leaf | Node (Tree a) a (Tree a)

structure, here is the induction
principle for binary trees in Haskell: ‘
Inductive Case Subgoals that
B . .) need to be proven
ase Case Induction Hypothesis Induction Step in order to prove
the main goal
P Leaf vx t1 tr.(P t1 A P tr = P (Node tl x tr))
Vt ° P t Main goal to
be proven
where P t :: Tree a -> Bool is any property on trees that we want to prove.

Note: The symbol A denotes logical “and” (a.k.a. conjunction), and binds tighter than =,
which denotes logical implication. The universal quantifier ¥ binds the weakest.

Excursion
Proof Rules & Proof Trees

Induction is not the only concept that can be precisely expressed in terms of proof rules.
Proof rules can also be used to:

» Precisely specify the meaning and use of logical connectives (e.g., A, V, —, =, 3, V)

» Thereby perform other forms of proof such as proof by contradiction, case distinction, ...
» Perform proofs involving equational reasoning

« Construct entire proofs (i.e., proof trees) by combining individual proof rules

In standard mathematics, proofs are normally communicated informally as prosa text.

In formal mathematics, proof rules are used to formally specify the structure of a proof upto its finest details.

This makes it possible for a computer to help construct and check the correctness of a proof!

16

Excursion
Proof Rules & Proof Trees

Here is an example of what a complete set of proof rules for first-order
logic with equality looks like.

» Proofs are just trees constructed using these proof rules.

« Using such rules, one could implement a data type that can only contain
valid theorems.

« This is exactly the approach that automated proof assistants use, and is

the original motivation behind parametric polymorphism (a.k.a. generics).

* One almost never constructs proof trees by hand.

* There are several automated proof assistants to choose from:
Isabelle/HOL, Coq, Adga, Idris, Lean, F*, ACL2, PVS, HOL4,

RFR " RCFCh%
R=C,RFC wp

hyp hyp
Va.H(x)= M(z),H(s) - H(s) Va.H(z) = M(x), M(s), H(s) - M(s)
Vo H(z) = M(x), H(s) = M(s), H(s) - M = hwp
), H

Vo H(z) = M(z), [z := s|H (z) = M(x), H(
Vo H(x) = M(x), H(s) = M(s)

Theory FoPCe

X HEQ HEP HPEQ
HPFP"™ HPrQ ™" HFQ o
H,-PF L
m Lhyp HFT Tgoal “HEP contr
HPEL Hi P
HE-P 9l gpg M
HEP HFQ . HPQFR
HEFPAQ "% HPAQFRTP
HE P CHFQ H,PFR HQFR
H-pvo YU Frpyg Vo2 HPVOF R
HPHFQ HFP HQFR
HEP=q 7% “HPsorr MW
HFP=Q HFQ=P HP=QQ=PFR
HF P& Q S goal HPeQFR WP
HEP H,Va.P, [z := EJPFQ
HE Ve P Vgoal (x nfln H) HvYzPF O Yhyp
Hb [z := E]P HPFQ

HE3:P dgoal 7H 32 PFQ Jhyp (z nf|n HuU{Q})

oy ME=FF[=FP
HFE=E 9 HE=FF[z:=E|P

=hyp

Vhyp

17

Excursion
Proof Rules & Proof Trees

systems used in programming languages.

mathematical logic.

Theory FoPCe

In computer science, proof rules are used to formally specify the type

Here is an example of what a complete set of proof rules for the simply
typed lambda calculus, and the polymorphic lambda calculus look like.

The proof rules for type systems have a striking simmilarity to those of

This led to the discovery of a deep connection between computation and
proof, known as the Curry-Howard Correspondence, a.k.a. the PAT
interpretation, which is used in systems such as Agda, Coqg and Idris.

"PAT" Interpretation: Propositions As Types, Proofs As Terms

Theory 1—

—_— var
Taxwokzxz:o

I'EM:o—7 I'EN:o

eobM: 1

apptcrm
I'FMN:7

abstcr‘m

I'XeM:o—71

Theory)2

EN =
HEP HQFR _ L];FQ
nP=qQrr W HEP=0Q
H,V2.P,[z := E]PF Q HEP i
)) goal (
Ve PT O Vhyp HF Va.P

=goal

x nfin H)

—_———— var
Izokax:0o

I'EM:o—1 I'EN:o
I'MN:T

appterm

I'EM :Va.o
' M:ola:=1]

apPtype

I'zobM: 1
I'EXe.M:o—T1

abSterm

'FM:o
I'M:Vao

absype ()

(*) The last rule only applies if the type variable o does not occur free in any type

inT.

18

Key ldea of FP: Denotative Language / Semantics

Central passages:

“The commonplace expressions of arithmetic and algebra have a certain simplicity
that most communications to computers lack. In particular, (a) each expression has
a nesting subexpression structure, (b) each subexpression denotes something
(usually a number, truth value or numerical function), (c) the thing an expression
denotes, i.e., its "value", depends only on the values of its sub-expressions, not on
other properties of them.”

“The word "denotative" seems more appropriate than non-procedural, declarative or
functional. The antithesis of denotative is "imperative”.”

“functional programming has little to do with functional notation.”

“The question arises, do the idiosyncracies reflect basic logical properties of the
situations that are being catered for? Or are they accidents of history and personal
background that may be obscuring fruitful developments?”

“we must think in terms, not of languages, but of families of languages. That is to say
we must systematize their design so that a new language is a point chosen from a
well-mapped space, rather than a laboriously devised construction.”

The Next 700 Programming Languages

P. J. Landin
Univac Division of Sperry Rand Corp., New York, New York

. today . . . 1,700 special pro

municate’ in over 700 application »

lng languages used to
»—Compuler Software Issues

an American Mathematical Association Prospectus, July 1965.

Tiff

A family of uni i is de-
scribed that is intended to span di of application area

in the set of things provided by the library or

by a unified framework. This framework dictates the rules
cbout the uses of user-coined names, and the conventions
about characterizing functional relationships. Within this frame-
work the design of a specific language splits into two inde-
pendent parts. One is the choice of written appearances of
programs (or more generally, their physical representation).
The other is the choice of the abstract entities (such as numbers,
character-strings, lists of them, functional relations among
them) that can be referred to in the language.

The system is biased towards “expressions” rather than
“statements.” It includes a nonprocedural (purely functional)
subsystem that aims to expand the class of users' needs that
can be met by a single print-instruction, without sacrificing the
important properties that make conventional right-hand-side
expressions easy to construct and understand.

1. Introduction

Most programming languages are partly a way of
ng things in terms of other things and partly a
t of given things. The Iswim (If you See What I
a byproduct of an attempt to disentangle
nt languages.
uthor to think that many
concerned with the former
aptitude for a particular
rmined by the latter rather
on follows that many
language characteristics are irrelevant to the alleged
problem orientation.

Tswin is an attempt at a general purpose system for
describing things in terms of other things, that can be

roble) untcd hv q propriate lll()l((of primitives ,"

co, this is true of most language
more than one implementation, and if the dial

mming Languages and Pragmatics
nin, August 1965.

nention of X in this paper—cognoscenti
 an undercurrent. A not inappropriate title
urch without lambda.”

will neverthele
would have been “

Volume 9 / Number 3 / March, 1966

system. Perhaps had ALGoL 60 been launched
as a family instead of proclaimed as a language, i

have fielded some of the less relevant criticisms of its

g
atively meager. This appearance will be e
lng to someone who has not appreciated ho much

s in whmh thc
> textual segments
or otherwise constrain its
ably from one langua
another, and frequently even within a single lan
there may be different conventions for different classes 1)[
names, with near-analogies that come irritatingly close to
being exact. (Note that cal
be coined also vary, but these a ial differences. Whm
they have any logical significance it is likely to be perni-
cious, by leading to pu ch as Av GoL ’s integer labels.)

So rules about us rea
we might expect to
tions give ground to ogic. Another such 2
specifying functional relations. In fact th
closely related since any use of a u
plicitly involves a functional relation; e.g., compare

@(z+a) S(b+2c)
where z = b + 2 where f(z) = z(z+a)

Iswi is thus part programming language and part pro-
gram for research, A possible first step in the research
program is 1700 doctoral theses called “A Correspondence
between = and Church’s \-notation.”

2. The where-Notation
In ordinary mathematical communication, these uses
of ‘where’ require no explanation. Nor do the following:
JO+20) + f@2b—c)
where [(z) = z(z+a)
(o+20) + f(2b—c)
where [(z) = z(z+a)
and b = u/(ut1)
and ¢ = v/(v+1)
9(f where [(z) = az* + bz + ¢,
u/(ut1),
v/(0+41))
where g(f, p, @) = f(p+2q, 2p—q)

Communications of the ACM 157

/))/,

2
KC)

19

Excursion
The Lambda Cube

A® = Mo

A2 = ALI2

A— = Al

[Bar91] Hendrik Pieter Barendregt. Introduction to generalized type systems. J. Funct. Program.,
1(2):125-154, 1991.

Note: These are from personal notes that | have not
checked myself. Do not quote me on this.

Orign:

A— : Simply typed lambda calculus

Terms may only depend on Terms

Curry-Howard correspondence for A—: Propositional calculus restricted to only use implication.

Going up (2):

A2 : System F, second-order lambda calculus

Terms may depend on Types

(polymorphism, e.g. (Church-style) Aa:*.Ax:a.x : Va.a—a , or (Curry-style) Ax.x:va.a—a)

Curry-Howard correspondence for A2: fragment of second-order intuitionistic logic that uses only universal
quantification.

Going inwards (w):

Types may depend on Types

(type operators, e.g. "List a" is a type, where List is a type operator with kind * — *)

Not very interesting in isolation.

Normally combined with A2 (System F) to give Aw (System Fw) (a variant of this (System FC) is used in Haskell)
Curry-Howard correspondence for Aw (System Fw): Higher-Order Logic

Going rightwards (1, or P):

Types may depend on values

(dependent types, e.g. "FloatList 3" is a type denoting a list of floats with length 3, where Floatlist : Nat—*)
Al : also called AP, LF

Curry-Howard correspondence for Al'l: A form of predicate calculus that only uses implication and universal
quantification.

Richest calculus of all 8:
AlMw : Calculus of Constructions (CC, CoC, AC)

20

Reasoning about Programs
Going further

« Chapter 16 of the textbook contains some more examples
of proofs, as well as a section on proving the correctness
of a compiller.

« Chapter 17 of the textbook goes even further by showing
how the implementation of a compiler can be calculated
directly from the statement of its correctness.

« Try using an automated proof assistant such as
Isabelle/HOL, or a dependently typed programming
language such as Agda, Idris, or Coq.

* Try to build your own proof assistant in Haskell!

21

Selected Work

11

Gotthard Base Tunnel
Safety-relevant Functions “Freihaltung

h) 11
)

Uberfullverhinderung”

12

Gotthard Base Tunnel
Safety-relevant Functions “Freihaltung”, “Uberfullverhinderung”

€> SBB CFF FFS

Safety
on board.

Gotthard-/Ceneri-Basistunnel.
Galleria di base del San Gottardo/Ceneri.
Tunnel de base du Saint-Gothard/Ceneri.
Gotthard/Ceneri Base Tunnel.

Ubersicht Tunnelsysteme.

Veduta d’insieme delle sisteme delle gallerie.
Apergu des tunnels.

Overview of the tunnel systems.

mergency stop stations with co

Awm

Nothaltest:

Vezia

Erstfeld e Querschisige Sodportal
Nordportal Cunicol trasversall Pnnalg sud
Portale nord Galerles perpendiculaires Portail sud
Portail nord Cross-passage South portal
North portal

Camorino
Nordportal
Partale nord
Portail nord
North portal

Inspiration from:

Facts and figures on the New Rail Link through the Alps (NEATL
* Al 57 kilometras, the GBT s the longeast railway tunnel in
the world. The CBT meaasures 15,4 km.
* |t 1ock 17 years 1o buid the GET, the CBT was buit in 12 yaars,
* The GET cost a grand otal of CHF 12.2 bilien,

the C8T cost 3.5 bilion.
It 1akes just under 20 minutes to travel through the GBT
on a passanger train.

* The GBT can handle up to 260 freight and 65 passanger
trains per day.

* Temperatures nside the GET can reach 35 dagrees Calsius.

* Fraight trains travel through the tunneal at 100 kmy'h and
passenger trains at up to 230km/.

* Afire-fighting and rescue train is on hand near the north and
south porials of the tunnals - ready for sarvica round the
clock for your safaty.

* With the Caneri Base Tunnel compieted as well, joumeay
timee Zurich-Lugano will be cut by 45 minutes.

» Refinement calculus, Invariant preservation

* Inductively defined sets

13

Gotthard Base Tunnel

Safety-relevant Functions “Freihaltung”, “Uberfullverhinderung”

Are we being too paranoid?
Will these functions ever be needed?

DE |

TESSIN

Rauch

Die Glterziige im G
verkehren. Am Mor
gesperrt worden.

Publiziert: 29.01.2024 um 12:0

Brand im Gotthard-Basistunnel

ZennAPy S

SCHWEIZ

M | Schweiz | Gotthard-Zugentgleisung konnte 100 Millionen kosten

Experten schatzen Schadenssumme ein
Zugentgleisung im
Gotthard kostet iiber 100
Millionen!

Die Westrohre des Gotthard-Basistunnels ist noch immer geschlossen. Seit
Mitte August ein Glterzug entgleiste, ist der Zugverkehr stark
eingeschrankt. Experten schatzen, dass die Schadenssumme im dreistelligen
Millionenbereich liegt.

Publiziert: 26.10.2023 um 15:49 Uhr | Aktualisier t:26.10.2023 um 16:04 Uhr

14

Lambda Calculus Calculator

https://lambdacalc.io

15

https://lambdacalc.io/

Lambda Calculus Calculator

eoe M+ < > (] Not Secure — lambdacalc.io ¢ © 0 +
Lambda Calculus
Calculator

Rewrite Rules @ . Derivation @

1. T =z Ayzx AVEZ- +23
2 AL = dwdmm AV -
080
3 A=Mplgpqgp AV [—
‘ @ s @
4. vV =Aplgppg NV @ =

@) = ik AV -

4.
T swee < indfinf AN @ = -

(nfz)

8 + =im.An.m AV EZ - NextSteps

A succ n y

RN

N

Type-Based API| Search

https://typesearch.dev

17

https://typesearch.dev/

Hoogle for the hungry masses
Type-based API Search for All — typesearch.dev

eoe [+ (<

Hoog\e

Packages

-l is:exact +

= base i+

=/ ghc +

— base-compat +

— haskell-gi-base +
= relude +

= Cabal-syntax +
= github +

= numhask +

= ghc-lib-parser '+
= rebase '+

= hledger '+

= xmonad-contrib +
- stack '+

= incipit-base +

— cabal-install-solver +

= distribution-opensuse

N Lpe——

0 & hoogle.haskell.org R C ©) ﬁ =k

(a->b) ->[a] -> [b] ' set:stackage ':\ Search

:: (@a->b)->[a] ->[b]

map :: (a->b) ->[a] -> [b]

base Prelude Data.List GHC.Base GHC.List GHC.OldList, ghc GHC.Prelude.Basic, base-compat
Prelude.Compat, haskell-gi-base Data.Gl.Base.ShortPrelude, relude Relude.List.Reexport, Cabal-syntax
Distribution.Compat.Prelude, github GitHub.Internal.Prelude, numhask NumHask.Prelude, ghc-lib-parser
GHC.Prelude.Basic, rebase Rebase.Prelude, hledger Hledger.Cli.Script, xmonad-contrib
XMonad.Config.Prime, stack Stack.Prelude, incipit-base Incipit.Base, cabal-install-solver
Distribution.Solver.Compat.Prelude, distribution-opensuse OpenSuse.Prelude, faktory Faktory.Prelude,
hledger-web Hledger.Web.Import

map £ xs is the list obtained by applying £ to each element of xs, i.e.,

strictMap :: (a -> b) ->[a] -> [b]
ghc GHC. Utils.Misc, ghc-lib-parser GHC. Utils.Misc

map :: (a->b) ->[a] -> [b]

rio RIO.List RIO.Prelude, base-prelude BasePrelude, numeric-prelude NumericPrelude
NumericPrelude.Base, dimensional Numeric.Units.Dimensional.Prelude, mixed-types-num
Numeric.MixedTypes.PreludeHiding, LambdaHack Game.LambdaHack.Core.Prelude
Game.LambdaHack.Core.Prelude, yesod-paginator Yesod.Paginator.Prelude

[# map £ xs is the list obtained bv applving £ to each element of xs. i.e..

18

Hoogle for the hungry masses
Type-based API Search for All — typesearch.dev

Scaps: Type-Directed API Search for Scala

Scaps About Manual Blog & Source Lukas Wegmann Farhad Mehta Peter Sommerlad

Scaps: Scala API Search

s ” h g for di e f i lity in Scala lib s s th d H I Abstract ate tools that provide convenient access to the definitions in
Caps IS a search engine Tor discovering tunctionality in Scaia lioraries (or In other woras, a rHoogle Type-directed API search, using queries composed of both éllbrar}.f. Popul:r el).(an‘;:)les of su;:n tools l;a;e cofd;]cor:!yle»
for Scala). You can use both type signatures and keywords in your search queries. ywords and type si to retrieve definitions from ~ tion assistants that list the accessible members of the object
in question. Although, there are several reasons why code

Highlights

Type Search

Use a type signature in
your query and Scaps

will retrieve definitions

with similar types.

Keywords &
Operators
You can use keywords or

operator names to
search Scaps: |@|

Scala Docs

When you have found a
definition that seems
interesting, you can
directly navigate to the
according Scala Doc

wegmaluk@gmail.com

APIs, are popular in the functional programming community.
This search technique allows programmers to easily navi-
gate complex and large APIs in order to find the definitions
they are interested in. While there exist some effective ap-
proaches to address type-directed API search for functional

subtyping into an API retrieval model. We describe a new
approach to API retrieval and provide an implementation
thereof for the Scala language. Our evaluation with queries
mined from Q&A websites shows that the model retrieves
definitions from the Scala standard library with 94% of the
relevant results in the top 10.

Categories and Subject Descriptors D.2.3 [SOFTWARE
ENGINEERING]: Coding Tools and Techniques

Keywords ~ API Search and Retrieval, Polarized Types

IplusX AG, Switzerland Mirko Stocker

Institute for Software, University of Applied
Sciences Rapperswil, Switzerland
{first}.{last}@hsr.ch

completion is not always able to provide developers with a
complete picture of suitable functionality: First, the structure
of an API greatly influences the discoverability of its func-
tionality. Indirections like factories, utility classes, extension

languages, we observed that none of these have been success- methods and implicit cony often hinders P

fully adapted for use with statically-typed, object-oriented from quickly discovering library features [4, 16]. Second, pro-
The chall here is i ing large and uni- in the 1 style results in abstrac-

fied inheritance hi jes and the resulting p of tions of transformations over data structures. While it would

be favorable to provide as much of these abstractions as pos-
sible as library functions, it becomes more difficult for users
to quickly discover important features. And finally, varying
naming schemes amongst programming environments further

i API discovery. D pers used to names like
filter and mkString in one environment will likely have
some troubles when switching to an environment that uses
where and join for the same operations. To overcome these
problems, developers often resort to universal search engines
like Google to find a specific implementation. While these
search engines regularly provide good results, users have

For exa.mple’ . Also mixing keywords entry by using the "Doc" 1. Introduction to scan the result pages for suitable content. Additionally,
Ordering[String] X .) _— . . general search engines may retrieve outdated information
| ror and type signatures is link. A crucial part of creating high quality software is the reuse of referring to an older revision of a library.
also retrieves . . existing functionality provided by in-house or third-part; . . N .
; . possible: max: Int orogr 8 ing “bmn_ycsl’ This enszms it function aul:y g In order to alleviate these problems search engines, like
Ordering.String ammi . Hoogle for Haskell [8], allow searching for values based on

which is a subtype of the

query type.

News

« November 10, 2015 - Grouped Result Sets
« September 23, 2015 - Free Scaps

Authorship

Scaps is an offspring of a master’s thesis by Lukas Wegmann at the University of Applied Science

Rapperswil (HSR).

by Lukas Wegmann, IFS | Twitter

not unnecessarily reimplemented and lowers the risk of
introducing erroneous behavior. Code reused over various
projects has a greater chance of being reliable since it has
been well-tested in production.

Discovering existing functionality is a task that requires
either deep knowledge of the relevant libraries, or appropri-

Permission to make digital or hard copies of all or part of this work for personal or
room use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

10 post on Servers or to redistribute to lists, requires prior specific permission and/or a

flee. Request permissions from Permissions@acm.org.

SCALA'16, October 30-31, 2016, Amsterdam, Netherlands

© 2016 ACM. 978-1-4503-4648-1/16/10...$15.00

hitp://dx.doi.org/10.1145/2998392.2998405

95

their type signature. Hoogle retrieves definitions related to
the query type ordered by their relevance to the query. This
assumes that developers usually know what types they have
and of what type the result should be, but do not know how
to get there. The great number of questions of the form “How
to create X from Y” on popular Q&A websites supports this
assumption.

‘While the idea to use types to direct API searches is
not a new one [13], there are almost no applications of this
idea outside the i i ity, even
though such a tool would definitely be useful for object-
oriented languages, like Scala, that leverage a high level of
type safety. However, while attempting to adopt Hoogle to

SCALA’16, October 30-31, 2016, Amsterdam, Netherlands

© 2016 ACM. 978-1-4503-4648-1/16/10...$15.00
http://dx.doi.org/10.1145/2998392.2998405

19

Hoogle for the hungry masses
Type-based API Search for All — typesearch.dev

eoe0e M- < 0O @ typesearch.dev 2 N © O +

@® TypeSearch Search Documentation About

You are seeing the new experimental version of TypeSearch based on proof search. If the results are unsatisfactory, you can consult the
legacy version, instead.

Stream<A>, (A -> boolean) -> Stream<A> Java v

TypeSearch currently searches through 50 modules for the selected language.

New to TypeSearch? Try out these queries: X

toList

Stream<A>, (A -> boolean) -> Stream<A>
String -> File

random int

read file into string : ? -> String +java.base

Found 17 results in 1.193 seconds.
default Stream<T> dropWhile(Predicate<? super T> predicate) @
java.util.stream.Stream + JDK | java.base | 21.01 —
+)
* Returns, if this stream is ordered, a stream consisting of the remaining

* elements of this stream after dropping the longest prefix of elements
* that match the given predicate. Otherwise returns, if this stream is

v

Stream<T> filter(Predicate<? super T> predicate) @

java.util.stream.Stream + JDK | java.base | 21.01 —

Targeted at mainstream

(typed OO) languages

Inspiration: Curry-Howard Isomorphism
Type Search is Proof Search!

AdHoc - General

Code synthesis also possible

TyDe Workshop ICFP 2024 (ACM)

20

CodePanorama

21

CodePanorama
The 10 ms code review

https://codepanorama.dev

Clone by URL Use local repository

Git URL

Enter URL to Git-repository

Branch or Tag

e.g. "master"

30th [IEEE/ACM i Conference on Program C¢

CodePanorama: a language agnostic tool
for visual code inspection

Marc Etter
OST Eastern Switzerland University of Applied Sciences
Department of Computer Science
Switzerland
marc.etter@ost.ch

ABSTRACT

Software projects change hands frequently. Oftentimes, developers
are interested in the quality of the code before taking over re-
sponsibility on a project. This quality is commonly assessed using
various code metrics, reducing the code into a handful of numbers.
While useful, these numerical reductions quickly become detached
from the real code. CodePanorama uses an alternative approach to
summarize code not into numbers, but into images. By generating
zoomed-out images of the code-base, the human eye can quickly
spot anomalies without the need to rely on numerical metrics and
statistics. This paper describes the tool CodePanorama, the images
it generates, and the insights that can be gained from these images.
We finally invite the software engineering community to start using
it.

KEYWORDS

Software Visualization, Code Review, Evolution and Maintenance,
Software Quality, Software Engineering

ACM Reference Format:

Marc Etter and Farhad Mehta. 2022. CodePanorama: a language agnostic
tool for visual code inspection. In 30th International Conference on Program
Comprehension (ICPC '22), May 16-17, 2022, Virtual Event, USA. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3524610.3527874

1 INTRODUCTION

There exist a number of metrics for the estimation of software
quality [5]. By their very nature, these metrics are reductionistic:
they aim to express software quality with a handful of numbers.
In practice, anyone who wants to assess the quality of a piece of
software for themselves, does not solely depend on these sets of
numbers. Instead, they typically also scroll through the source code
to build their own impression of its quality. Such an impression
can be important when deciding to maintain or develop a project
further, or to grade a project as an instructor.

Farhad Mehta
OST Eastern Switzerland University of Applied Sciences
Department of Computer Science
Switzerland
farhad. mehta@ost.ch

the reviewer to take advantage of their innate image processing
skills [3] to instantly get a good first impression of thousands of
lines of code. Furthermore, the tool allows quickly honing in on the
code’s more potentially problematic parts directly within the tool.

In addition to just displaying a zoomed-out version of the code-

base, a user can additionally enrich a code panorama with colors
important project-relevant i uch as change
frequency, author, or custom text searches. They are thereby able
to reach a more conclusive judgement of code quality.

We claim that the use of such a tool complements existing quality
estimation metrics: Using it, an experienced developer is able to
have a similar estimate of code quality as reported by more involved
code analysis tools. its use allows an
developer to spot problems in the code that are not detected by
standard code quality metrics.

We have made the CodePanorama tool freely available for public
use as a web application’.

2 RELATED WORK

The idea behind this visualization originated out of a need to eval-
uate the code quality of large student projects. Our initial search
for such a tool did not reveal anything that we could use. After
developing the tool, we were made aware that similar visualizations
had been attempted before. SeeSoft [4], developed in the 1990s, is
often cited as the first implementation of this so-called “code-map
metaphor” [1]. Bacher et al. have published a review paper, com-
paring 21 different implementations of the code-map metaphor [1].
Their study concludes that such a visualization has great benefits in
the software engineering process. Nevertheless, we observe that its
use is virtually nonexistent in the standard software engineering
process. We believe that the CodePanorama tool will allow this form
of visualization to be used more frequently in modern software
engineering projects. The reasons for our belief are that it fills use-
ful and important gaps not (or only partially) covered by the other
tools, namely:

£

We present CodePanorama: a language agnostic tool for visual
: o

is publicly available as a web

generates zoomed-out images (so-called code panoramas) of the
entire selected code-base of a software project, thereby allowing

ience C
application. Therefore, there is no need to install anything
locally to analyze a project.

icability C: was designed to be language-

This aCreative Ce Attributic 140 License.
ICPC '22, May 16-17, 2022, Virtual Event, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 975-1-4503-9258-3/22/05.

hitps://doi.org/10.1145/3524610.3527874

25

agnostic, therefore it is able to visualize any repository, re-
gardless of which programming language is used. It can even
be used for projects that contain just text, but no code, such
as technical ion. For these projects, i

such as authorship or change frequency are still relevant.

"https://codepanorama.io

ICPC 2022 (ACM/IEEE)

22

CodePanorama

The 10 ms code review

com/google/guava

ithub.

/g

https

r_r il

ki

il

_.;____:;?

_ 2E$aﬁ ;m_ . E,gaL
i g Al

;;_m%

__Et i

agiahwzngmsaz

il

%m

ikl E“E :LE i "

gaa

i B r_

23

https://github.com/google/guava

CodePanorama
The 10 ms code review

https://qithub.com/haskell-servant/servant

Highlights: Change Frequency

24

https://github.com/haskell-servant/servant

Robotics

25

Robotic Artwork

Joint work with artis duo Pors & Rao

o “Untitled” nttps:/www.youtube .com/watch?v=RIDoAHKzZu0&t=110s

« Using Functional Reactive Programming (FRP)
to improve developer experience and control

« FARM ICFP 2024

26

https://www.youtube.com/watch?v=RlDoAHKzZu0&t=110s

ZuriHac

29

ZuriHac

The biggest Haskell community event in the world: a three-day grassroots coding
festival co-organized by the Zurich Friends of Haskell and the OST Eastern
Switzerland University of Applied Science.

- GF IMPERATIVE CODE, LOOKING FOR A BETYER WAY...

30

ZuriHac

> 400 Participants
50% Europe, 35% CH, 15% Overseas
5% Industry, 25% Academia

Organizing since 2017 at the OST (Before: Google, ETHZ, Better AG)
Main aim: To promote and contribute to the state of the art in principled computer programming.
Focus: Functional Programming and Haskell
But not only...
Applications: FRP, Build Systems, SE Practices, Metaprogramming, Hardware Design, Verification...
Other Programming Languages: Agda, Verse, Racket, Dhal, Nix, ...

Fundamental Concepts: Type Systems, PL Semantics, Logik, Category Theory, Combinators, ...

31

Highlights ZuriHac 2024

Keynotes (others were great too)

Low level: “Functional Hardware Description and verification”
(Mary Sheeran)

High level: “Haskell in Space”. Runtime verification at NASA
(lvan Perez)

- With both feet on the ground: “Making people dance with Haskell”:
(Alex MclLean)

3 Advanced tracks: FRP, Generic Programming, Dependent Types
Beginner Track with 30 Participants (Eliane Schmidli)

- For some, just too overwhelming: "l just arrived in Paris and noticed that | may have
forgot my luggage at the OST. Could you please take a look"

32

The biggest Haskell community event in the world: a three-day grassroots coding festival
co-organized by the Zurich Friends of Haskell and the OST Eastern Switzerland University
of Applied Science.

Saturday 7 June — Monday 9 June 2025
Rapperswil, Switzerland

Registration is open and free.

https://zurihac.info
https://zfoh.ch/zurihac2025/

https://zurihac.info/
https://zfoh.ch/zurihac2025/

