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Generalized algebraic data types 
(GADTs)



data Tree a = Leaf 
            | Node (Tree a) a (Tree a)  

This definition introduces:

•  a new data type  Tree of kind *!->*. 

•  two constructor functions 

Leaf :: Tree a 
Node :: Tree a -> a -> Tree a -> Tree a 

 the possibility to use the constructors Leaf and Node in pattern

A datatype



Observation 

The types of the constructor functions contain sufficient information to describe the 
datatype. 

data Tree a where 
  Leaf !::                          Tree a 
  Node !:: Tree a !-> a !-> Tree a !-> Tree a 

Question 

What are the restrictions regarding the types of the constructors? 

Alternative syntax

arguments can be different result type has to be the same for all constructors



Constructors of an algebraic datatype T must: 

- target the type T 

- must all result in the same simple type of kind *, that is some type

T a1 … an        where a1,!!...,an are distinct type variables. 

Algebraic data types



data Either a b where  
  Left  :: a -> Either a b 
  Right :: b -> Either a b  

Both constructors produce values of type Either a b. 

Does it make sense to lift this restriction? 

Another example



Imagine we’re implementing a small programming language in Haskell: 

data Expr 
  = LitI   Int  
  | LitB   Bool  
  | IsZero Expr 
  | Plus   Expr Expr 
  | If     Expr Expr Expr 

Excursion: Expression language



Equivalently, we could define the data type as follows: 

data Expr where 
  LitI   :: Int                  -> Expr 
  LitB   :: Bool                 -> Expr 
  IsZero :: Expr                 -> Expr 
  Plus   :: Expr -> Expr         -> Expr 
  If     :: Expr -> Expr -> Expr -> Expr  

Excursion: Expression language



Possible concrete syntax: 

if isZero (0 + 1) then False else True  

Abstract syntax: 

If (IsZero (Plus (LitI 0) (LitI 1))) 
   (LitB False) 
   (LitB True)  

Syntax: concrete vs abstract 



It is all too easy to write ill-typed expressions such as: 

If (LitI 0) (LitB False) (LitI 1) 

 

How can we prevent programmers from writing such terms? 

Type errors 



At the moment, all expressions have the same type: 

data Expr  
  = LitI Int  
  | LitB Bool  
  | ...  

We would like to distinguish between expressions of different types. 

Phantom types

To do so, we add an additional type parameter to our expression data type. 



data Expr a = LitI Int  
            | LitB Bool  
            | IsZero (Expr Int) 
            | Plus   (Expr Int) (Expr Int) 
            | If     (Expr Bool) (Expr a) (Expr a) 

Phantom types

Note that the type variable a is never actually used in the data type for expressions. 

We call such type variables phantom types. 

LitI   :: Int                              -> Expr a             
LitB   :: Bool                             -> Expr a 
IsZero :: Expr Int                         -> Expr a 
Plus   :: Expr Int  -> Expr Int            -> Expr a  
If     :: Expr Bool -> Expr a   -> Expr a  -> Expr a



Rather than expose the constructors of our expression language, we can instead provide 
a well-typed API for users to write terms: 

litI :: Int -> Expr Int 
litI = LitI 

plus :: Expr Int -> Expr Int -> Expr Int 
plus = Plus 

isZero :: Expr Int -> Expr Bool 
isZero = IsZero 

This guarantees that users will only ever construct well-typed terms! 

But, what about writing an interpreter for these expressions?

Constructing well-typed terms



Before we write an interpreter, we need to choose the type that it returns. 

eval :: Expr a -> ??? 

Our expressions may evaluate to booleans or integers: 

data Val = VInt  Int  
         | VBool Bool  

Defining an interpreter now boils down to defining a function: 

eval :: Expr a -> Val

Evaluation



eval :: Expr a -> Val 
eval (LitI n)   = VInt n 
eval (LitB b)   = VBool b 
eval (IsZero e) = 
  case eval e of 
    VInt n -> VBool (n == 0) 
    _      -> error "type error"  
eval (Plus e1 e2) = 
  case (eval e1, eval e2) of  
    (VInt n1, VInt n2) -> VInt (n1 + n2) 
    _                  -> error "type error" 

Evaluation



• Evaluation code is mixed with code for handling type errors.  

• The evaluator uses tags (i.e.,constructors) to distinguish values — these  
tags are maintained and checked at runtime.  

• Type errors can, of course, be prevented by writing a type checker for  
our embedded language, or using phantom types.  

• Even if we know that we only have type-correct terms, the Haskell compiler does not 
enforce this.  

Evaluation



What if we encode the type of the term in the Haskell type? 

data Expr a where 
  LitI   :: Int                             -> Expr Int 
  LitB   :: Bool                            -> Expr Bool 
  IsZero :: Expr Int                        -> Expr Bool 
  Plus   :: Expr Int  -> Expr Int           -> Expr Int 
  If     :: Expr Bool -> Expr a   -> Expr a -> Expr a  

Each expression has an additional type argument, representing the type it will evaluate 
to. 

Beyond phantom types



GADTs lift the restriction that all constructors must produce a value of the same type. 

• Constructors may have more specific return types 

• Pattern matching causes type refinement

• Interesting consequences for pattern matching: 

when case-analyzing an Expr Int, it could not be constructed by LitB or 
IsZero;  

when case-analyzing an Expr Bool, it could not be constructed by LitI or 
Plus;  

when case-analyzing an Expr a, once we encounter the constructor IsZero in 
a pattern, we know that we must be dealing with an Expr Bool;  

GADTs



eval :: Expr a -> a 
eval (LitI n)     = n 
eval (LitB b)     = b 
eval (IsZero e)   = eval e == 0 
eval (Plus e1 e2) = eval e1 + eval e2 
eval (If e1 e2 e3) 
  | eval e1       = eval e2 
  | otherwise     = eval e3 

No possibility for run-time failure; no tags required for the return value  

Pattern matching on a GADT requires a type signature. Why? 

Evaluation revisited



data X a where 
  C :: Int ->  X Int 
  D ::         X a 
  E :: Bool -> X Bool  

f (C n) =[n]   -- (1) 
f D     =[]    -- (2) 
f (E n) =[n]   -- (3) 

What is the type of f, with/without (3)?
 What is the (probable) desired type? 

f :: X a -> [Int]   -- (1) only 
f :: X b -> [c]     -- (2) only 
f :: X a -> [Int]   -- (1) + (2) 

Limitation: type signatures are required



Let us extend the expression types with pair construction and projection: 

data Expr a where  
   …  
   Pair :: Expr a -> Expr b -> Expr (a,b) 
   Fst  :: Expr (a,b)       -> Expr a 
   Snd  :: Expr (a,b)       -> Expr b 

For Fst and Snd, the type of the non-projected component is ‘hidden’—that is, it is not 
visible from the type of the compound expression. 

Extending our language



eval :: Expr a -> a 
eval ... 
eval (Pair x y) = (eval x, eval y) 
eval (Fst p)    = fst (eval p) 
eval (Snd p)    = snd (eval p) 

Evaluation again



GADTs have become one of the more popular Haskell extensions. 

The classic example for motivating GADTs is the type-safe interpreter, such as the one we 
have seen here. 

However, these richer data types offer many other applications. 

In particular, they let us program with types in interesting new ways. 

GADTs



> myComplicatedFunction 42 "inputFile.csv" 
*** Exception: Prelude.head: empty list 

Can we use the type system to rule out such exceptions before a program is run? 

To do so, we’ll introduce a new list-like datatype that records the length of the list in its 
type. 

Prelude.head: empty list



Natural numbers can be encoded as types (no constructors are required): 

data Zero  
data Succ a  

Define a vector as a list with a fixed number of elements: 

data Vec a n where 
  Nil  ::                 Vec a Zero  
  Cons :: a -> Vec a n -> Vec a (Succ n)  

Natural numbers and vectors



head :: Vec a (Succ n) -> a 
head (Cons x xs) = x 

tail :: Vec a (Succ n) -> Vec a n 
tail (Cons x xs) = xs 

Question 

Why is there no case for Nil is required? 

Type-safe head and tail



map :: (a -> b) -> Vec a n -> Vec b n 
map f Nil         = Nil 
map f (Cons x xs) = Cons (f x) (map f xs) 

zipWith :: (a -> b -> c) -> Vec a n -> Vec b n -> Vec c n 
zipWith f Nil         Nil         =  Nil 
zipWith f (Cons x xs) (Cons y ys) = 
  Cons (f x y) (zipWith f xs ys) 

We can require that the two vectors have the same length! 

This lets us rule out bogus cases. 

More functions on vectors



snoc :: Vec a n -> a -> Vec a (Succ n) 
snoc Nil         y = Cons y Nil 
snoc (Cons x xs) y = Cons x (snoc xs y) 

reverse :: Vec a n -> Vec a n 
reverse Nil         = Nil 
reverse (Cons x xs) = snoc (reverse xs) x 

What about appending two vectors, analogous to the (++) operation on lists? 

Yet more functions on vectors



• What is the type of our append function? 

      vappend :: Vec a m -> Vec a n -> Vec a ??? 

      How can we add two types, n and m? 

• Suppose we want to convert from lists to vectors: 

      fromList :: [a] -> Vec a n 

   Where does the type variable n come from? What possible values can it have?

Problematic functions



There are multiple options to solve that problem: 

• construct explicit evidence; or 

• use a type family (more on that in the lecture on Friday by Alejandro). 



Given two natural number types m and n, what is their sum?

We can define a GADT describing the graph of addition: 

data Sum m n s where 
  SumZero :: Sum Zero n n  
  SumSucc :: Sum m n s -> Sum (Succ m) n (Succ s)  

Using this function, we can now define append as follows: 

append :: Sum m n s 
       -> Vec a m -> Vec a n -> Vec a s 
append SumZero     Nil         ys = ys 
append (SumSucc p) (Cons x xs) ys = Cons x (append p xs ys) 

Explicit evidence



This approach has one major disadvantage: 
we must construct the evidence — the values of type Sum m n p — by hand 
every time we wish to call append.

Sometimes we can use fancy type class machinery to automate this construction.

Passing explicit evidence


