
Faculty of Science
Information and Computing Sciences

1

Type families and data kinds
AFP Summer School

Wouter Swierstra



Faculty of Science
Information and Computing Sciences

2

Today

▶ How do GADTs work?
▶ Kinds beyond *
▶ Programming with types



Faculty of Science
Information and Computing Sciences

3

Calling functions on vectors

Given two vectors xs : Vec a n and ys : Vec a m.

Suppose I want to zip these vectors together using:

zipVec :: Vec a n -> Vec b n -> Vec (a,b) n

Question
What happens when I call zipVec xs ys?

I get a type error: n and m are not necessarily equal!



Faculty of Science
Information and Computing Sciences

3

Calling functions on vectors

Given two vectors xs : Vec a n and ys : Vec a m.

Suppose I want to zip these vectors together using:

zipVec :: Vec a n -> Vec b n -> Vec (a,b) n

Question
What happens when I call zipVec xs ys?
I get a type error: n and m are not necessarily equal!



Faculty of Science
Information and Computing Sciences

4

Comparing the length of vectors

We can define a boolean function that checks when two
vectors have the same length

equalLength :: Vec a m -> Vec b n -> Bool
equalLength Nil Nil = True
equalLength (Cons _ xs) (Cons _ ys) =
equalLength xs ys

equalLength _ _ = False



Faculty of Science
Information and Computing Sciences

5

Comparing the length of vectors

Such a function is not very useful…

Suppose I want to use this to check the lengths of my
vectors:

if equalLength xs ys
then zipVec xs ys
else error "Wrong lengths"

Question
Will this type check?

No! Just because equalLength xs ys returns True, does
not guarantee that m and n are equal…
How can we enforce that two types are indeed equal?



Faculty of Science
Information and Computing Sciences

5

Comparing the length of vectors

Such a function is not very useful…

Suppose I want to use this to check the lengths of my
vectors:

if equalLength xs ys
then zipVec xs ys
else error "Wrong lengths"

Question
Will this type check?
No! Just because equalLength xs ys returns True, does
not guarantee that m and n are equal…
How can we enforce that two types are indeed equal?



Faculty of Science
Information and Computing Sciences

6

Equality type

Just as we saw for the Sum type, we can introduce a GADT
that represents a ‘proof’ that two types are equal:

data Equal :: * -> * -> * where
Refl :: Equal a a



Faculty of Science
Information and Computing Sciences

7

Equality type

We can ‘prove’ properties of our equality relation:

refl :: Equal a a
sym :: Equal a b -> Equal b a
trans :: Equal a b -> Equal b c -> Equal a c

Question
How are these functions defined?
What happens if you don’t pattern match on the Refl
constructor?



Faculty of Science
Information and Computing Sciences

7

Equality type

We can ‘prove’ properties of our equality relation:

refl :: Equal a a
sym :: Equal a b -> Equal b a
trans :: Equal a b -> Equal b c -> Equal a c

Question
How are these functions defined?

What happens if you don’t pattern match on the Refl
constructor?



Faculty of Science
Information and Computing Sciences

7

Equality type

We can ‘prove’ properties of our equality relation:

refl :: Equal a a
sym :: Equal a b -> Equal b a
trans :: Equal a b -> Equal b c -> Equal a c

Question
How are these functions defined?
What happens if you don’t pattern match on the Refl
constructor?



Faculty of Science
Information and Computing Sciences

8

Equality type

Instead of returning a boolean, we can now provide
evidence that the length of two vectors is equal:

eqLength :: Vec a m -> Vec b n -> Maybe (Equal m n)
eqLength Nil Nil = Just Refl
eqLength (Cons x xs) (Cons y ys) =
case eqLength xs ys of
Just Refl -> Just Refl
Nothing -> Nothing

eqLength _ _ = Nothing



Faculty of Science
Information and Computing Sciences

9

Using equality

test :: Vec a m -> Vec b (Succ n) -> Maybe (a,b)
test xs ys =

case eqLength xs ys
Just Refl -> head (zipVec xs ys)
_ -> Nothing

Question
Why does this type check?



Faculty of Science
Information and Computing Sciences

10

Expressive power of equality

The equality type can be used to encode other GADTs.

Recall our expression example using phantom types:

data Expr a =
LitI Int

| LitB Bool
| IsZero (Expr Int)
| Plus (Expr Int) (Expr Int)
| If (Expr Bool) (Expr a) (Expr a)



Faculty of Science
Information and Computing Sciences

11

Expressive power of equality

We can use equality proofs and phantom types to
‘implement’ GADTs:

data Expr a =
LitI (Equal a Int) Int

| LitB (Equal a Bool) Bool
| IsZero (Equal a Bool) (Equal b Int)
| Plus (Equal a Int) (Expr Int) (Expr Int)
| If (Expr Bool) (Expr a) (Expr a)
...



Faculty of Science
Information and Computing Sciences

12

Safe vs unsafe coercions

Using our equality function we can safely coerce between
types:

coerce :: Equal a b -> a -> b
coerce Refl x = x

Question
Why does this type check?

Question
What about this definition:

coerce :: Equal a b -> a -> b
coerce p x = x



Faculty of Science
Information and Computing Sciences

12

Safe vs unsafe coercions

Using our equality function we can safely coerce between
types:

coerce :: Equal a b -> a -> b
coerce Refl x = x

Question
Why does this type check?

Question
What about this definition:

coerce :: Equal a b -> a -> b
coerce p x = x



Faculty of Science
Information and Computing Sciences

13

Aside: irrefutable patterns

Haskell also allows irrefutable patterns:

lazyHead ~(x:xs) = x

This does not force the list to weak head normal form.



Faculty of Science
Information and Computing Sciences

14

Aside: irrefutable patterns

In tandem with GADTs this is particularly dangerous:

coerceL :: Equal a b -> a -> b
coerceL ~Refl x = x

Question
How could this cause well-typed program to crash with a
type error?

foo :: Bool -> Int
foo b = coerceL undefined b

Apparently unrelated language features may interact in
unexpected ways!



Faculty of Science
Information and Computing Sciences

14

Aside: irrefutable patterns

In tandem with GADTs this is particularly dangerous:

coerceL :: Equal a b -> a -> b
coerceL ~Refl x = x

Question
How could this cause well-typed program to crash with a
type error?

foo :: Bool -> Int
foo b = coerceL undefined b

Apparently unrelated language features may interact in
unexpected ways!



Faculty of Science
Information and Computing Sciences

15

System FC

We saw that Haskell’s core language, System FC, is a typed
lambda calculus, extended with data types and pattern
matching.

One of its more distinct features is coercions and casts.

▶ Coercions play the same role as our Equal data type;
▶ If two types are coercible, one can be cast to the other:

isZero :: (a ~ Int) => a -> Bool

There is quite a lot of work necessary to guarantee that this
does not accidentally make the type system unsound!

Pattern matching on GADTs introduces such coercions in the
individual branches.



Faculty of Science
Information and Computing Sciences

16

Problems with GADTs

vappend :: Vec a n -> Vec a m -> Vec a ???

To define this function, we needed to construct an explicit
relation describing how to add two types, n and m.



Faculty of Science
Information and Computing Sciences

17

Problems with GADTs

toVec :: [a] -> Vec a ???

To define this function, we needed to reify natural numbers
on the type level – defining a singleton type SNat.



Faculty of Science
Information and Computing Sciences

18

Passing explicit Sums

In Alejandro’s lecture, we saw how to pass an explicit
argument, explaining how to add two ‘type-level’ natural
numbers:

data Sum :: * -> * -> * -> * where
SumZero :: Sum Zero n n
SumSucc :: Sum n m s -> Sum (Succ n) m (Succ s)

But constructing this evidence by hand is tedious…



Faculty of Science
Information and Computing Sciences

19

Multi-parameter type classes

One way to automate this, is through amulti-parameter type
class

class Summable a b c | a b -> c where
makeSum :: Sum a b c

instance Summable Zero n n where
makeSum = SumZero

instance Summable n m s =>
Summable (Succ n) m (Succ s) where

makeSum = SumSucc makeSum

append :: Sum n m s =>
Vec a n -> Vec a m -> Vec a s

append = vappend makeSum



Faculty of Science
Information and Computing Sciences

20

Multi-parameter type classes

Type classes define relations between types:

▶ Eq defines a subset of all types that support an equality
function;

▶ MonadState defines a subset of pairs of types s and m,
where m supports read/write operations on a state of
type s.

The Summable type class is special case of such relations – it
is really defining a function between types.



Faculty of Science
Information and Computing Sciences

21

Multi-parameter type classes

For some time, multi-parameter type classes with functional
dependencies were the only way in Haskell to define such
type-level computations.

But there has been a flurry of research in the last decade
exploring alternative language extensions.

... the interaction of functional dependencies
with other type-level features such as
existentials and GADTs is not well understood
and possibly problematic.

Kiselyov, Peyton Jones, Shan in Fun with type families



Faculty of Science
Information and Computing Sciences

22

Associated types and type families

Type classes let you capture an interface – such as monads
(supporting return and bind), or monoids (supporting zero
and addition).

These interaces can describe functions.

But what if we would like them to describe types.



Faculty of Science
Information and Computing Sciences

23

Associated types

Associated types let you declare a type in a class
declaration:

class Collects c where
type Elem c -- Associated type synonym
empty :: c
insert :: Elem c -> c -> c
toList :: c -> [Elem c]

Any instance of the Collects class must choose a type of
elements, together with definitions for the functions.



Faculty of Science
Information and Computing Sciences

24

Associated types – examples

instance Eq e => Collects [e] where
type Elem [e] = e
empty = []
...

instance Collects BitSet where
type Elem BitSet = Char
...



Faculty of Science
Information and Computing Sciences

25

Addition through association

We can use such associated types to replace the functional
dependencies we saw previously:

class Summable n m where
type TheSum n m
makeSum :: Sum n m (TheSum n m)

instance Summable Zero n where
type TheSum Zero m = m
...

instance Summable n m =>
Summable (Succ n) m where
type TheSum (Succ n) m = Succ (TheSum n m)
...



Faculty of Science
Information and Computing Sciences

26

Associated types or multiparameter type?

Both approaches are similar in expressive power.

Multiparameter type classes are no longer fashionable –
mainly because they can make type class resolution
unpredictable.

Associated types have gained traction in other languages –
such as Apple’s Swift.



Faculty of Science
Information and Computing Sciences

27

Type families

Associated types always require a class definition – even if
we’re only interested in the types.

Type families build upon the technology that associated
types provide, enabling you to write:

type family Sum n m
type instance Sum Zero n = n
type instance Sum (Succ n) m = Succ (Sum n m)

This looks much more like regular programming…



Faculty of Science
Information and Computing Sciences

28

Type families

If we piggyback on the associated type machinery, however,
all our type families are open – we can add bogus definitions:

type instance Sum n Zero = Zero

Furthermore, all our ‘type level’ code is essentially untyped.

type instance Sum Bool Int = Char



Faculty of Science
Information and Computing Sciences

29

Closed type functions

The more modern closed type families allow you to define a
function between types using pattern matching:

type family Count (f :: *) :: Nat where
Count (a -> b) = 1 + (Count b)
Count x = 1

GHC will try to match a given type against the patterns one
by one, taking the first branch that matches successfully.

This almost lets us program with types almost as if they
were regular values.



Faculty of Science
Information and Computing Sciences

30

Kinds

So far we have seen that two different forms of kinds:

▶ all types have kind *
▶ given two kinds k1 and k2, we can form the kind k1 ->

k2 – corresponding to the type constructor taking
something of kind k1 to produce a type of kind k2.

This is essentially the simply typed lambda calculus with one
base type.

As soon as we do richer programming with types, however,
we would like stronger guarantees about the safety of the
type level computations that we write.



Faculty of Science
Information and Computing Sciences

30

Kinds

So far we have seen that two different forms of kinds:

▶ all types have kind *
▶ given two kinds k1 and k2, we can form the kind k1 ->

k2 – corresponding to the type constructor taking
something of kind k1 to produce a type of kind k2.

This is essentially the simply typed lambda calculus with one
base type.

As soon as we do richer programming with types, however,
we would like stronger guarantees about the safety of the
type level computations that we write.



Faculty of Science
Information and Computing Sciences

31

Example

data Apply f a = MkApply (f a)

Question
What is the kind of Apply?

Many different answers exist: (* -> *) -> * -> * being
the most obvious. But there’s no reason that amust have
kind *.
You can make the case for kind polymorphism – just as we
have polymorphism in types (GHC supports this).



Faculty of Science
Information and Computing Sciences

31

Example

data Apply f a = MkApply (f a)

Question
What is the kind of Apply?
Many different answers exist: (* -> *) -> * -> * being
the most obvious. But there’s no reason that amust have
kind *.
You can make the case for kind polymorphism – just as we
have polymorphism in types (GHC supports this).



Faculty of Science
Information and Computing Sciences

32

Promotion

data Zero
data Succ n

data Nat = Zero | Succ Nat

How can we ensure all numbers in our types to be built from
Zero and Succ?



Faculty of Science
Information and Computing Sciences

33

Promotion

Using the DataKinds language extension we can introduce
new kinds and automatically promote data constructors into
their type-level variants:

{-# LANGUAGE DataKinds #-}

data Nat = Zero | Succ Nat

This declaration introduces:

▶ a new kind Nat
▶ a type 'Zero :: Nat
▶ a type 'Succ :: Nat -> Nat

(This only works for algebraic data types, not for GADTs)



Faculty of Science
Information and Computing Sciences

34

Example: booleans

-- the usual definition of booleans
data Bool = True | False

-- Not function on values
not :: Bool -> Bool
not True = False
not False = True

-- Not function on types
type family Not (a :: Bool) :: Bool
type instance Not True = False
type instance Not False = True



Faculty of Science
Information and Computing Sciences

35

Type-level literals

GHC takes the idea of programming with types quite far.

It has added support and syntax for:

▶ type-level strings;
▶ type-level lists;
▶ type-level integers;

…



Faculty of Science
Information and Computing Sciences

36

Outlook generic programming: Reflecting types

We can even use GADTs to reflect types themselves as data:

data Type :: * -> * where
INT :: Type Int
BOOL :: Type Bool
LIST :: Type a -> Type [a]
PAIR :: Type a -> Type b -> Type (a,b)



Faculty of Science
Information and Computing Sciences

37

Safe dynamically typed values

We can define dynamically typed values by packing up a type
representation with a value:

data Dynamic :: * where
Dyn :: Type a -> a -> Dynamic

To unwrap these values safely, we check whether the types
line up as expected:

coerce :: Type a -> Dynamic -> Maybe a
coerce t (Dyn t' x) =
case eqType t t'
Just Refl -> Just x
_ -> Nothnig



Faculty of Science
Information and Computing Sciences

37

Safe dynamically typed values

We can define dynamically typed values by packing up a type
representation with a value:

data Dynamic :: * where
Dyn :: Type a -> a -> Dynamic

To unwrap these values safely, we check whether the types
line up as expected:

coerce :: Type a -> Dynamic -> Maybe a
coerce t (Dyn t' x) =
case eqType t t'
Just Refl -> Just x
_ -> Nothnig



Faculty of Science
Information and Computing Sciences

38

Generic programming

We can also define new functions by induction on the type
structure:

f :: Type a -> ... a ...

In this way, we can define our own versions of functions
such as show, read, equality, etc.



Faculty of Science
Information and Computing Sciences

39

Outlook: writing webserver with Servant

Servant is a library for describing web APIs.

From such a description, it will generate documentation, a
simple webserver, etc.

Instead of describing the APIs using Haskell values – you
describe the API as a (complex) Haskell type.

type HackageAPI =
"users" :> Get '[JSON] [UserSummary]

:<|> "user" :> Capture "username" Username
:> Get '[JSON] UserDetailed

:<|> "packages" :> Get '[JSON] [Package]

And then generate any desired functionality from this
description.



Faculty of Science
Information and Computing Sciences

40

Recap: GADTs

GADTs give you more power to define interesting types in
Haskell.

We can decorate our types withmore specific information.

But we still cannot do any interesting computation using
types.



Faculty of Science
Information and Computing Sciences

41

Recap: GADTs

▶ GADTs can be used to encode advanced properties of
types in the type language.

▶ We end up mirroring expression-level concepts on the
type level (e.g. natural numbers).

▶ GADTs can also represent data that is computationally
irrelevant and just guides the type checker (equality
proofs, evidence for addition).
Such information could ideally be erased, but in Haskell,
we can always cheat via undefined :: Equal Int
Bool…



Faculty of Science
Information and Computing Sciences

42

Recap: type families

▶ Haskell has various different ways to program with
types;

▶ We’ll see numerous applications of these ideas next
week, such as data type generic programming.

▶ But the ‘value language’ and ‘type language’ live in very
different worlds…


