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Wrapping up

• Official opening this afternoon at the Centraal Museum

• Pizza tonight at Channable from 18:00 onwards

• Hand in your keys tomorrow morning (09:45-10:00)

• If you want, we can arrange for you to store your luggage in an office upstairs.
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Motivation

Similar functionality for different types

• equality, comparison

• mapping over the elements, traversing data structures

• serialization and deserialization

• generating (random) data

• …

Often, there seems to be an algorithm independent of the details of the datatype at hand. Coding

this pattern over and over again is boring and error-prone.
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Deriving

We can use Haskell’s deriving mechanism to get some functionality for free:

data Tree = Leaf

| Node Tree Int Tree

deriving (Show, Eq)

This works for a handful of built-in classes, such as Show, Ord, Read, etc.

But what if we want to derive instances for classes that are not supported?

4



Example: encoding values

data Tree = Leaf | Node Tree Int Tree

data Bit = O | I

encodeTree :: Tree -> [Bit]

encodeTree Leaf = [O]

encodeTree (Node l x r) = [I] ++ encodeTree l

++ encodeInt x

++ encodeTree r

We assume a suitable encoding exists for integers:

encodeInt :: Int -> [Bit]
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Example: encoding values

data Lam = Var Int

| App Lam Lam

| Abs Lam

encodeLam :: Lam -> [Bit]

encodeLam (Var n) = [O] ++ encodeInt n

encodeLam (App f a) = [I,O] ++ encodeLam f

++ encodeLam a

encodeLam (Abs e) = [I,I] ++ encodeLam e
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Encode: Underlying ideas

In both cases we have seen, we:

• encode the choice between different constructors using sufficiently many bits,

• and append the encoded arguments of the constructor being used in sequence.

• use the encode function being defined at the recursive positions

Goal
Express the underlying algorithm for encode in such a way that we do not have to write a new

version of encode for each datatype anymore.
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The idea

(Datatype-)Generic Programming
Techniques to exploit the structure of datatypes to define functions by induction over the type

structure.
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Approach taken in this lecture

• define a uniform representation of data types;

• define a functions to and from to convert values between user-defined datatypes and their

representations.

• define your generic function by induction on the structure the representation.
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Regular datatypes

Most Haskell datatypes have a common structure:

data Pair a b = Pair a b

data Maybe a = Nothing | Just a

data Tree a = Tip | Bin (Tree a) a (Tree a)

data Ordering = LT | EQ | GT

Informally:

• A datatype can be parameterized by a number of variables.

• A datatype has a number of constructors.

• Every constructor has a number of arguments.

• Every argument is a variable, a different type, or a recursive call.
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Constructing regular datatypes

Idea
If we can describe regular datatypes in a different way, using a limited number of combinators, we

can use this structure to define algorithms for all regular datatypes.

We proceed in two steps:

• abstract over recursion

• describe the “remaining” structure systematically.
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Fixpoints

We can define fix in Haskell using the defining property of fixed point combinators:

fix f = f (fix f)

This lets us capture recursion explicitly – enabling us to memoize computations, for example.

Question
What is the type of fix?
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Fixpoints

We would like to define a similar fixpoint operation to describe recursion in datatypes.

For functions, we abstract over the recursive calls:

fac :: (Int -> Int) -> Int -> Int

fac = \fac x -> if x == 0 then 1 else x * fac (x-1)

For data types, let’s do the same:

data Tree t = Leaf

| Node t Int t

We introduce a separate type parameter corresponding to recursive occurrences of trees.
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Type-level fixpoints?

data TreeF t = Leaf

| Node t Int t

Now Tree is not recursive – how can we take compute its fixpoint?
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Type-level fixpoints

We can compute the fixpoint of a type constructor analogously to the fix function:

fix f = f (fix f)

data Fix f = In (f (Fix f))

Question
What is the kind of Fix?
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Type-level fixpoints

We can now define trees using our Fix datatype:

data TreeF t = LeafF

| NodeF t Int t

data Fix f = In (f (Fix f))

type Tree = Fix TreeF

The type TreeF is called the pattern functor of trees.

Question
What is the pattern functor for our data type of lambda terms?
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Type-level fixpoints

This construction works equally well for lists:

data ListF a xs = NilF

| ConsF a xs

data Fix f = In (f (Fix f))

type List a = Fix (ListF a)

Question
Is our type List a the same as [a]?

What does ‘the same’ mean?
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Type isomorphisms

Two types A and B are isomorphic if we can define functions

f :: A -> B

g :: B -> A

such that

forall (x :: A) . g (f x) = x

forall (x :: B) . f (g x) = x
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Types Fix (ListF a) and [a] are isomorphic

from :: (Fix (ListF a)) -> [a]

from (In NilF) = []

from (In (ConsF x xs)) = x : from xs

to :: [a] -> Fix (ListF a)

to [] = In NilF

to (x : xs) = In (ConsF x (to xs))

It is relatively easy to see that these are inverses …
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A single step of recursion

Instead of taking the fixpoint, we can also use the pattern functor to observe a single layer of

recursion.

To do so, we consider the type ListF a [a] – the outermost layer is a NilF or ConsF; any recursive

children are ‘real’ lists.

from :: ListF a [a] -> [a]

from NilF = []

from (ConsF x xs) = x : xs

to :: [a] -> ListF a [a]

to [] = NilF

to (x : xs) = ConsF x xs

Once again, these are inverses.
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Pattern functors are functors

data ListF a r = NilF | ConsF a r

instance Functor (ListF a) where

fmap f NilF = NilF

fmap f (ConsF x r) = ConsF x (f r)

Mapping over the pattern functor means applying the function to all recursive positions.

This is different from what fmap does on lists, normally!
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Pattern functors are functors – contd.

data TreeF t = LeafF

| NodeF t Int t

instance Functor TreeF where

fmap f (LeafF) = LeafF

fmap f (NodeF l x r) = NodeF (f l) x (f r)
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Writing pattern functors

Where these pattern functors give us a good way to describe recursive datatypes – how should we

write them?

Idea
Haskell data types can typically be described as a combination of a small number of primitive

operations.
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Building pattern functors systematically

Choice between two constructors can be represented using

data (f :+: g) r = L (f r) | R (g r)

Choice between constructors can be represented using multiple applications of (:+:).

Two constructor arguments can be combined using

data (f :*: g) r = f r :*: g r

More than two constructor arguments can be described using multiple applications of (:*:).
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Building pattern functors systematically – contd.

A recursive call can be represented using

data I r = I r

Constants (such as independent datatypes or type variables) can be represented using

data K a r = K a

Constructors without argument are represented using

data U r = U
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Example

Our kit of combinators.

data (f :+: g) r = L (f r) | R (g r)

data (f :*: g) r = f r :*: g r

data I r = I r

data K a r = K a

data U r = U

data ListF a r = NilF | ConsF a r

type ListS a = U :+: (K a :*: I)

The types ListS a r and [a] are isomorphic.

All simple data types in Haskell can be described using these five combinators.
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Excursion: algebraic data types

Haskell’s data types are sometimes referred to as algebraic datatypes.

What does algebraic mean?

Abstract algebra is a branch of mathematics that studies mathematical objects such as monoids,

groups, or rings.

These structures are typically generalizations of familiar sets/operations (such as addition or

multiplication on natural numbers).

If you prove a property of these structures from the axioms, this property for every structure

satisfying the axioms.
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Algebraic datatypes

The :*: and :+: behave similarly to * and + on numbers; the U type is similar to 1.

For example, for any type t we can show 1 * t is isomorphic to t.

Or for any types t and u, we can show t * u is isomorphic to u * t.

Similarly, t :+: u is isomorphic to u :+: t.
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Recap

So far we have seen how to represent data types using pattern functors, built from a small

number of combinators.

• How can we define generic functions – such as the binary encoding example we saw

previously?

• How can we convert between user-defined data types and their pattern functor

representation?
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Defining generic functions

We would like to define a function

encode :: f a -> [Bit]

that works on all pattern functors f.

Instead, we’ll define a slight variation:

encode :: (a -> [Bit]) -> f a -> [Bit]

which abstracts over the handling of recursive subtrees.
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Generic encoding

class Encode f where

fencode :: (a -> [Bit]) -> f a -> [Bit]

instance Encode U where

fencode _ U = []

instance Encode (K Int) where

-- suitable implementation for integers

instance Encode I where

fencode f (I r) = f r
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Generic encoding – contd.

class Encode f where

fencode :: (a -> [Bit]) -> f a -> [Bit]

instance (Encode f, Encode g) =>

Encode (f :+: g) where

fencode f (L x) = O : fencode f x

fencode f (R x) = I : fencode f x

instance (Encode f, Encode g) =>

Encode (f :*: g) where

fencode f (x :*: y) =

fencode f x ++ fencode f y
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Where are we now?

Using these instances, we can derive fencode for every pattern functor built up from the functor

combinators.

How does that give us encode for a concrete datatype?

If we have a conversion function

from :: [a] -> ListS a [a]

we can define

encodeList :: [Int] -> [Bit]

encodeList = fencode encodeList . from
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The Regular class

We can systematically store the isomorphism using a class:

class Regular a where

from :: a -> (PF a) a

to :: PF a a -> a

What is PF?

type family PF a :: * -> *

instance Regular [a] where

from = ...

to = ...

type instance PF [a] = ListS a

34



The Regular class

We can systematically store the isomorphism using a class:

class Regular a where

from :: a -> (PF a) a

to :: PF a a -> a

What is PF?

type family PF a :: * -> *

instance Regular [a] where

from = ...

to = ...

type instance PF [a] = ListS a
34



Generic encode, again

We can write a generic encoding function:

encode :: (Regular a, Encode (PF a)) => a -> [Bit]

encode = fencode encode . from

This works for any regular data type that can be represented as a pattern functor.
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Who does what?

Generic library
Provides the functor combinators and some other helper functions.

Library
Provides generic functions by defining instances for all the functor combinators.

User
Per datatype, provides an isomorphism with the pattern functor. Can then use all the generic

functions.
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The regular library

• Available from Hackage.

• Provides generic programming functionality in the style just described.

• Several generic functions are defined, more in regular-extras.

• Can automatically derive the pattern functor and isomorphism for a datatype (using

Template Haskell).
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Limitations of the approach

• Not all types are regular – nested types, mutually recursive types, GADTs are all not

supported.

• Encoding type parameters via constants is not optimal. We cannot, for example, generically

define the map function over a type parameter using regular.
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Recap

• Pattern functors give us the mathematical machinery to describe and recursive datatypes.

• As a result, we can define generic functions (such as encode) and patterns of recursion (cata);

• Understanding pattern functors lets us express the relation between data types and their

folds (Church encodings)

• We can use Haskell’s type classes to assemble modular datatypes and functions!

• We can use this technology to define new data structures generically – such as zippers or

tries.
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Other approaches

There are many generic programming frameworks.

They take different views on the structure of Haskell datatypes and have slightly different

strengths and weaknesses.

Some other approaches:

• Scrap your boilerplate (syb)

• Uniplate

• EMGM

• instant-generics

• multirec

• Template Haskell
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Generics in practice

One point we glossed over in the discussion about the regular library is how to convert between

our representation type and user-written datatypes.

We can automate this using Template Haskell:

• inspect the datatype definition;

• generate the corresponding to and from functions.

This works – but requires some programming work – especially if you’re writing your own generic

programming library.
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GHC.Generics

GHC now ships with a built-in library for writing generic functions GHC.Generics.

This handles all the conversions between representations for you.

It also exposes a great deal of meta-information such as:

• data type names;

• constructor names;

• field projections;

• …

It has become the de facto standard for a lot of generic programming work.

But using it is not always easy – you need to understand all of Haskell to write a generic function

yourself.
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Bonus slides on combining data types
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Combining datatypes

In Haskell, whenever we define a data type:

data Expr = Val Int | Add Expr Expr

We can add new functions freely:

eval :: Expr -> Int

render :: Expr -> String

But we cannot add new constructors without modifying the datatype and any functions defined

over it.

In object oriented languages, the situation is dual: we can add new subclasses to a class, but

adding new methods requires updating every subclass.
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The Expression Problem

Phil Wadler dubbed this the Expression Problem:

The expression problem is a new name for an

old problem. The goal is to define a datatype

by cases, where one can add new cases to the

datatype and new functions over the datatype,

without recompiling existing code, and while

retaining static type safety (e.g., no casts).

How can we address the Expression Problem in Haskell?
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A naive approach

data IntExpr = Val Int | Add Expr Expr

data MulExpr = Mul IntExpr Intexpr

type Expr = Either IntExpr MulExpr

Question
What is wrong with this approach?

We cannot freely mix addition and multiplication.
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Solution: work with pattern functors

data AddF a = Val Int | Add a a

data MulF a = Mul a a

data Expr f = In (f (Expr f))

type MyExpr = Expr (AddF :+: MulF)

Problems

• How can we write functions over expressions?

• Constructing expressions is a pain:

addExample :: Expr (MulF :+: AddF)

addExample = In (Inl (Mul (In (Inr (Val 1)))

(In (Inr (Val 2)))))
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Functions over expressions

Usually, we write functions through pattern matching on a fixed set of branches.

But pattern matching on our constructors is painful (we have lots of injections in the way).

And this fixes the possible patterns that we accept.

Idea
Use Haskell’s class system to assemble algebras for us!
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Functions over expressions

To define a function over an expression – without knowing the constructors – we introduce a new

type class:

class Eval f where

evalAlg :: f Int -> Int

eval :: Eval f => Expr f -> Int

eval = cata evalAlg
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Functions over expressions

We can now add instance for all the constructors that we wish to support:

instance Eval AddF where

evalAlg (Add l r) = l + r

evalAlg (Val i) = i

instance Eval MulF where

evalAlg (Mul l r) = l * r

...

50



Functions over expressions

To assemble the desired algebra, however, we need one more instance:

instance (Eval f, Eval g) => Eval (f :+: g) where

evalAlg x = ...

Question
What should this instance be?
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Functions over expressions

To assemble the desired algebra, however, we need one more instance:

instance (Eval f, Eval g) => Eval (f :+: g) where

evalAlg (Inl x) = evalAlg x

evalAlg (Inr y) = evalAlg y

52



The Expression Problem

• How can we write functions over expressions?

• Use type classes

• Constructing expressions is a pain:

addExample :: Expr (MulF :+: AddF)

addExample = In (Inl (Mul (In (Inr (Val 1)))

(In (Inr (Val 2)))))

Idea
Define smart constructors!
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Not so smart constructors

For any fixed pattern functor, we can define auxiliary functions to assemble datatypes:

data AddF a = Val Int | Add a a

type AddExpr = Expr AddF

add :: AddExpr -> AddExpr -> AddExpr

add l r = In (Add l r)

But how can we handle coproducts of pattern functors?
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Automating injections

To deal with coproducts, we introduce a type class describing how to inject some ‘small’ pattern

functor sub into a larger one sup:

class (:<:) sub sup where

inj :: sub a -> sup a

What instances are there?
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Instances

class (:<:) sub sup where

inj :: sub a -> sup a

instance (:<:) f f where

inj = ...

instance (:<:) f (f :+: g) where

inj = ...

instance ((:<:) f g) => (:<:) f (h :+: g) where

inj = ...

Question
How should we complete the above definitions?
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Instances

class (:<:) sub sup where

inj :: sub a -> sup a

instance (:<:) f f where

inj = id

instance (:<:) f (f :+: g) where

inj = Inl

instance ((:<:) f g) => (:<:) f (h :+: g) where

inj = inj . Inr
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Smart constructors

inject :: ((:<:) g f) => g (Expr f) -> Expr f

inject = In . inj

val :: (AddF :<: f) => Int -> Expr f

val x = inject (Val x)

add :: (AddF :<: f) => Expr f -> Expr f -> Expr f

add x y = inject (Add x y)

mul :: (MulF :<: f) => Expr f -> Expr f -> Expr f

mul x y = inject (Mul x y)
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Results!

e1 :: Expr AddF

e1 = val 1 `add` val 2

v1 :: Int

v1 = eval e1

e2 :: Expr (MulF :+: AddF)

e2 = val 1 `mul` (val 2 `add` val 3)

v2 :: Int

v2 = eval e2
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Extensibility

We can easily add new constructors:

data SubF a = SubF a a

type NewExpr = SubF :+: MulF :+: AddF

Or define new functions:

class Render f where

render :: f String -> String
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General recursion

What if we would like to define recursive functions without using folds?

A first attempt might be:

class Render f where

render :: f (Expr f) -> String

But this is too restrictive! We require f and the recursive pattern functors (Expr f) to be the same.
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Generalizing

A more general type seems better:

class Render f where

render :: f (Expr g) -> String

We can try to define an instance:

instance Render Mul where

render :: Mul (Expr g) -> String

render (Mul l r) = ...

Question
How can we complete this instance?

We cannot make a recursive call! We don’t know that the pattern functor g can be rendered.
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General recursion

class Render f where

render :: Render g => f (Expr g) -> String

instance Render Mul where

render :: Mul (Expr g) -> String

render (Mul l r) = renderExpr l

++ " * "

++ renderExpr r

renderExpr :: Render f => Expr f -> String

renderExpr (In t) = render t
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Recap

Datatype generic programming lets us exploit the structure of our datatypes to generate new

functions and types.
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Bonus slides on folds
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Beyond simple generic functions

This concept of pattern functor gives us the language to study the structure of data structures in

greater detail.

The Foldable class in Haskell is defined as follows:

class Foldable t where

fold :: Monoid m => t m -> m

But not all folds compute monoidal results…

Can we give a more precise account of folds?
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Folding lists

We have seen the fold on lists many times:

foldr :: (a -> r -> r) -> r -> [a] -> r

foldr op e [] = e

foldr op e (x:xs) = op x (foldr op e xs)

In the other lectures, we saw examples of other folds over natural numbers, trees, etc.

Can we describe this pattern more precisely?
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Ideas in foldr

• Replace constructors by user-supplied arguments.

• Recursive substructures are replaced by recursive calls.
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Folding lists – contd.

foldr :: (a -> r -> r) -> r -> [a] -> r

Compare the types of the constructors with the types of the arguments:

(:) :: a -> [a] -> [a]

[] :: a -> [a]

cons :: a -> r -> r

nil :: a -> r
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Folding other structures

data Nat = Suc Nat | Zero

foldNat :: (r -> r) -> r -> Nat -> r

foldNat s z Zero = z

foldNat s z (Suc n) = s (foldNat s z n)

data Lam = Var Int | App Lam Lam | Abs Lam

foldLam :: (Int -> r) -> (r -> r -> r) -> (r -> r)

-> Lam -> r

foldLam v ap ab (Var n) = v n

foldLam v ap ab (App f a) = ap (foldLam v ap ab f)

(foldLam v ap ab a)

foldLam v ap ab (Abs e) = ab (foldLam v ap ab e)

70



Folding other structures
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Catamorphism generically

If we can map over the generic positions, we can express the fold or catamorphism generically:

cata :: (Regular a, Functor (PF a)) =>

(PF a r -> r) -> a -> r

cata phi = phi . fmap (cata phi) . from

The argument describing how to handle each constructor, PF a r -> r, is sometimes called an

algebra.

Question
What about the cata defined over fixpoints?
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Alternatively

Or using our fixpoint operation on types we can write:

newtype Fix f = In (f (Fix f))

cata :: Functor f => (f a -> a) -> Fix f -> a

cata f (In t) = f (fmap (cata f) t)
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Further information

• The Haskell wiki

• www.haskell.org/haskellwiki/Generics

• www.haskell.org/haskellwiki/GHC.Generics

• A generic Deriving Mechanism for Haskell by Magalhães et al.

• Data types a la carte by Wouter Swierstra;

• Type-indexed data types by Jeuring, Loeh, and Hinze.
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