
July 11, 2024

Accelerate

Ivo Gabe de Wolff
AFP Summer School

Accelerate

Domain specific language for functional, parallel, array programming.

Embedded in Haskell: Accelerate is a library providing a ‘language’ within
Haskell

We look at Accelerate from two perspectives:
• Perspective from a user,
• Perspective from an implementor

Accelerate July 11, 2024 1

Parallel programming

Parallelism is needed for maximal performance,
and widely available on multi-core CPUs and massively-parallel GPUs.

Parallelism is hard:
It is difficult to make a fast and correct algorithm.

Accelerate July 11, 2024 2

Parallel programming

Parallelism is needed for maximal performance,
and widely available on multi-core CPUs and massively-parallel GPUs.

Parallelism is hard:
It is difficult to make a fast and correct algorithm.

Accelerate July 11, 2024 2

Common parallel patterns

Parallel algorithms can often be built with common patterns:
• Map
• Reduction (fold)
• Prefix sum (scan)
• Stencil (map with neighbourhood)
• Scatter (permute)

Domain-Specific Languages may provide these patterns as building blocks
(combinators/functions).

Accelerate July 11, 2024 3

Common parallel patterns

Parallel algorithms can often be built with common patterns:
• Map
• Reduction (fold)
• Prefix sum (scan)
• Stencil (map with neighbourhood)
• Scatter (permute)

Domain-Specific Languages may provide these patterns as building blocks
(combinators/functions).

Accelerate July 11, 2024 3

Familiar combinators
Some of these combinators are familiar from Data.List.

Consider this function to compute a dot product:

dotp :: [Float] → [Float] → Float
dotp xs ys = foldl (+) 0 (zipWith (∗) xs ys)

Accelerate provides similar combinators, as a library in Haskell.
The types are different:

import Prelude()
import Data.Array.Accelerate
dotp :: Acc (Vector Float) → Acc (Vector Float) → Acc (Scalar Float)
dotp xs ys = fold (+) 0 (zipWith (∗) xs ys)

Accelerate July 11, 2024 4

Familiar combinators
Some of these combinators are familiar from Data.List.

Consider this function to compute a dot product:

dotp :: [Float] → [Float] → Float
dotp xs ys = foldl (+) 0 (zipWith (∗) xs ys)

Accelerate provides similar combinators, as a library in Haskell.
The types are different:

import Prelude()
import Data.Array.Accelerate
dotp :: Acc (Vector Float) → Acc (Vector Float) → Acc (Scalar Float)
dotp xs ys = fold (+) 0 (zipWith (∗) xs ys)

Accelerate July 11, 2024 4

Familiar combinators
Some of these combinators are familiar from Data.List.

Consider this function to compute a dot product:

dotp :: [Float] → [Float] → Float
dotp xs ys = foldl (+) 0 (zipWith (∗) xs ys)

Accelerate provides similar combinators, as a library in Haskell.
The types are different:

import Prelude()
import Data.Array.Accelerate
dotp :: Acc (Vector Float) → Acc (Vector Float) → Acc (Scalar Float)
dotp xs ys = fold (+) 0 (zipWith (∗) xs ys)

Accelerate July 11, 2024 4

Deep embedding
Combinators in Accelerate build the representation of a computation.
They don’t compute anything yet.

Acc a is the representation or AST of an array computation.

This is similar to the Expr data type that you saw earlier:

run :: Acc a → a executes such a computation, similar to eval :: Expr e → e.

Accelerate July 11, 2024 5

Deep embedding
Combinators in Accelerate build the representation of a computation.
They don’t compute anything yet.

Acc a is the representation or AST of an array computation.

This is similar to the Expr data type that you saw earlier:

run :: Acc a → a executes such a computation, similar to eval :: Expr e → e.

Accelerate July 11, 2024 5

Deep embedding
Combinators in Accelerate build the representation of a computation.
They don’t compute anything yet.

Acc a is the representation or AST of an array computation.

This is similar to the Expr data type that you saw earlier:

run :: Acc a → a executes such a computation, similar to eval :: Expr e → e.

Accelerate July 11, 2024 5

Language design

Language only contains parallelisable constructs/combinators.

These combinators are data-parallel: parallelism is structured by the data.

Nested data (like matrices) are supported.
The inner sizes must be equal.
This allows for efficient parallel execution.

The type of the elements of arrays is restricted.

Design an embedding in Haskell that ensures these properties

Accelerate July 11, 2024 6

Types
Accelerate has two types to represent computations:

• Acc for array computations
• Exp for scalar computations

Data is stored in (possibly multi-dimensional) arrays, with type Array sh t.
• sh denotes the shape or dimension of the array.
• t is the type of the elements of the array.

Type classes Elt t and Shape sh range over the valid element types and
shapes/dimensions.

The type of map is now: (Shape sh,Elt t1,Elt t2) ⇒
(Exp t1 → Exp t2) → Acc (Array sh t1) → Acc (Array sh t2)

Accelerate July 11, 2024 7

Types
Accelerate has two types to represent computations:

• Acc for array computations
• Exp for scalar computations

Data is stored in (possibly multi-dimensional) arrays, with type Array sh t.
• sh denotes the shape or dimension of the array.
• t is the type of the elements of the array.

Type classes Elt t and Shape sh range over the valid element types and
shapes/dimensions.

The type of map is now: (Shape sh,Elt t1,Elt t2) ⇒
(Exp t1 → Exp t2) → Acc (Array sh t1) → Acc (Array sh t2)

Accelerate July 11, 2024 7

Types
Accelerate has two types to represent computations:

• Acc for array computations
• Exp for scalar computations

Data is stored in (possibly multi-dimensional) arrays, with type Array sh t.
• sh denotes the shape or dimension of the array.
• t is the type of the elements of the array.

Type classes Elt t and Shape sh range over the valid element types and
shapes/dimensions.

The type of map is now: (Shape sh,Elt t1,Elt t2) ⇒
(Exp t1 → Exp t2) → Acc (Array sh t1) → Acc (Array sh t2)

Accelerate July 11, 2024 7

Types
Accelerate has two types to represent computations:

• Acc for array computations
• Exp for scalar computations

Data is stored in (possibly multi-dimensional) arrays, with type Array sh t.
• sh denotes the shape or dimension of the array.
• t is the type of the elements of the array.

Type classes Elt t and Shape sh range over the valid element types and
shapes/dimensions.

The type of map is now: (Shape sh,Elt t1,Elt t2) ⇒
(Exp t1 → Exp t2) → Acc (Array sh t1) → Acc (Array sh t2)

Accelerate July 11, 2024 7

Shapes

A shape defines the dimensionality of an array.

Z is dimension zero.
sh :. Int is one dimension higher than sh.

Shapes are used for the size of arrays and indices of elements of arrays.

Type class Shape sh ranges over these shapes.

Accelerate July 11, 2024 8

Building blocks: map
Apply the given function element-wise to an array.

map :: (Shape sh,Elt t1,Elt t2)
⇒ (Exp t1 → Exp t2)
→ Acc (Array sh t1)
→ Acc (Array sh t2)

Variants:
• stencil: map with access to neighboring elements.
• imap: map with access to the index (besides the value).
• zipWith: map with two input arrays.
• zipWithN: map with N input arrays.

Accelerate July 11, 2024 9

Building blocks: map
Apply the given function element-wise to an array.

map :: (Shape sh,Elt t1,Elt t2)
⇒ (Exp t1 → Exp t2)
→ Acc (Array sh t1)
→ Acc (Array sh t2)

Variants:
• stencil: map with access to neighboring elements.

• imap: map with access to the index (besides the value).
• zipWith: map with two input arrays.
• zipWithN: map with N input arrays.

Accelerate July 11, 2024 9

Building blocks: map
Apply the given function element-wise to an array.

map :: (Shape sh,Elt t1,Elt t2)
⇒ (Exp t1 → Exp t2)
→ Acc (Array sh t1)
→ Acc (Array sh t2)

Variants:
• stencil: map with access to neighboring elements.
• imap: map with access to the index (besides the value).

• zipWith: map with two input arrays.
• zipWithN: map with N input arrays.

Accelerate July 11, 2024 9

Building blocks: map
Apply the given function element-wise to an array.

map :: (Shape sh,Elt t1,Elt t2)
⇒ (Exp t1 → Exp t2)
→ Acc (Array sh t1)
→ Acc (Array sh t2)

Variants:
• stencil: map with access to neighboring elements.
• imap: map with access to the index (besides the value).
• zipWith: map with two input arrays.

• zipWithN: map with N input arrays.

Accelerate July 11, 2024 9

Building blocks: map
Apply the given function element-wise to an array.

map :: (Shape sh,Elt t1,Elt t2)
⇒ (Exp t1 → Exp t2)
→ Acc (Array sh t1)
→ Acc (Array sh t2)

Variants:
• stencil: map with access to neighboring elements.
• imap: map with access to the index (besides the value).
• zipWith: map with two input arrays.
• zipWithN: map with N input arrays.

Accelerate July 11, 2024 9

Building blocks: generate

Construct a new array of the given size, by applying the function for each
index.

generate :: (Shape sh,Elt t)
⇒ Exp sh
→ (Exp sh → Exp t)
→ Acc (Array sh t)

Accelerate July 11, 2024
10

Building blocks: fold

Reduces the innermost dimension of an array.

fold :: (Shape sh,Elt t)
⇒ (Exp t → Exp t → Exp t)
→ Acc (Array (sh :. Int) t)
→ Acc (Array sh t)

A 1-dimensional vector becomes a 0-dimensional scalar (single value).
A 2-dimensional matrix becomes a 1-dimensional vector.

The function argument must be associative, for parallel execution.

Accelerate July 11, 2024
11

Building blocks: scan
For each element, computes the reduced value of all previous elements.
Also known as prefix sum.

scanl :: (Shape sh,Elt t)
⇒ (Exp t → Exp t → Exp t)
→ Acc (Array (sh :. Int) t)
→ Acc (Array (sh :. Int) t)

Scan operates on the inner dimension.
In a matrix, the scan works per row.

The function argument must be associative, for parallel execution.

Variants:
• Left-to-right or right-to-left scans.
• Inclusive or exclusive.
• Storing the total reduced value in a separate array.

Accelerate July 11, 2024
12

Building blocks: scan
For each element, computes the reduced value of all previous elements.
Also known as prefix sum.

scanl :: (Shape sh,Elt t)
⇒ (Exp t → Exp t → Exp t)
→ Acc (Array (sh :. Int) t)
→ Acc (Array (sh :. Int) t)

Scan operates on the inner dimension.
In a matrix, the scan works per row.

The function argument must be associative, for parallel execution.

Variants:
• Left-to-right or right-to-left scans.
• Inclusive or exclusive.
• Storing the total reduced value in a separate array.

Accelerate July 11, 2024
12

Building blocks: permute
Performs random writes: each element of the input is written to some index.
Also known as prefix sum.

permute :: (Shape sh,Shape sh′,Elt t)
⇒ (Exp sh → Exp sh′)
→ Acc (Array sh t)
→ Acc (Array sh′ t)

permute indexTransform input = . . .

Each index from the input is mapped to an index in the output.

Accelerate July 11, 2024
13

Building blocks: permute
Performs random writes: each element of the input is written to some index.
Also known as prefix sum.

permute :: (Shape sh,Shape sh′,Elt t)
⇒ (Exp sh →Maybe (Exp sh′))
→ Acc (Array sh t)
→ Acc (Array sh′ t)

permute indexTransform input = . . .

The index transformation may be partial: some elements of the input are
skipped.

Accelerate July 11, 2024
13

Building blocks: permute
Performs random writes: each element of the input is written to some index.
Also known as prefix sum.

permute :: (Shape sh,Shape sh′,Elt t)
⇒ Acc (Array sh′ t)
→ (Exp sh →Maybe (Exp sh′))
→ Acc (Array sh t)
→ Acc (Array sh′ t)

permute defaults indexTransform input = . . .

The index transformation might not be surjective: some elements of the
output may not be covered.

Accelerate July 11, 2024
13

Building blocks: permute
Performs random writes: each element of the input is written to some index.
Also known as prefix sum.

permute :: (Shape sh,Shape sh′,Elt t)
⇒ (Exp t → Exp t → Exp t)
→ Acc (Array sh′ t)
→ (Exp sh →Maybe (Exp sh′))
→ Acc (Array sh t)
→ Acc (Array sh′ t)

permute combine defaults indexTransform input = . . .

It takes a combination function to combine the value from the input with the
existing value.

Accelerate July 11, 2024
13

Building blocks: permute
Performs random writes: each element of the input is written to some index.
Also known as prefix sum.

permute :: (Shape sh,Shape sh′,Elt t)
⇒ (Exp t → Exp t → Exp t)
→ Acc (Array sh′ t)
→ (Exp sh →Maybe (Exp sh′))
→ Acc (Array sh t)
→ Acc (Array sh′ t)

permute combine defaults indexTransform input = . . .

This is also important if the index transformation is not injective: multiple
values can then be mapped to the same index.

Accelerate July 11, 2024
13

Building blocks: permute
Performs random writes: each element of the input is written to some index.
Also known as prefix sum.

permute :: (Shape sh,Shape sh′,Elt t)
⇒ (Exp t → Exp t → Exp t)
→ Acc (Array sh′ t)
→ (Exp sh →Maybe (Exp sh′))
→ Acc (Array sh t)
→ Acc (Array sh′ t)

permute combine defaults indexTransform input = . . .

The combination function is often const, which will simply overwrite the old
value with the new value, or +, which adds the new value to the old value.

Accelerate July 11, 2024
13

What can you express in this language?

More than you think!

Examples:
• Filter & partition
• Quicksort

Accelerate July 11, 2024
14

Filter

(On the blackboard)
Usemap to create an array where at each element, 1 denotes that the
element is preserved and 0 that it is dropped.
Use scanl (+) 0 to compute for each element, the index in the output it should
be written to.
Use permute to write the elements to the correct indices.
See https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/src/
Data.Array.Accelerate.Prelude.html#filter.

Accelerate July 11, 2024
15

https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/src/Data.Array.Accelerate.Prelude.html#filter
https://hackage.haskell.org/package/accelerate-1.3.0.0/docs/src/Data.Array.Accelerate.Prelude.html#filter

Partition

Partition is an extension of filter, with one case for the True-elements and one
for the False-elements

Accelerate July 11, 2024
16

Quicksort

quicksort [] = []

quicksort (p : xs) =
quicksort smaller ++ [p] ++ quicksort greater
where
smaller = filter (< p) xs
larger = filter (>= p) xs

How can we make this run in parallel?

We now know how to perform partition in parallel.

GPUs like to work on the entire array,
instead of the shorter segments (smaller and larger).

Accelerate July 11, 2024
17

Quicksort

quicksort [] = []

quicksort (p : xs) =
quicksort smaller ++ [p] ++ quicksort greater
where
smaller = filter (< p) xs
larger = filter (>= p) xs

How can we make this run in parallel?

We now know how to perform partition in parallel.

GPUs like to work on the entire array,
instead of the shorter segments (smaller and larger).

Accelerate July 11, 2024
17

Quicksort

quicksort [] = []

quicksort (p : xs) =
quicksort smaller ++ [p] ++ quicksort greater
where
smaller = filter (< p) xs
larger = filter (>= p) xs

How can we make this run in parallel?

We now know how to perform partition in parallel.

GPUs like to work on the entire array,
instead of the shorter segments (smaller and larger).

Accelerate July 11, 2024
17

Segments

Instead of performing two recursive calls,
we keep working on the entire array.

We mark segments in that array.
Each segment in the parallel algorithm corresponds to a call in the sequential
algorithm.

Partitioning happens via scans. We can use segmented scans instead, which
‘reset’ at segment boundaries.

Accelerate July 11, 2024
18

Segments

Instead of performing two recursive calls,
we keep working on the entire array.

We mark segments in that array.
Each segment in the parallel algorithm corresponds to a call in the sequential
algorithm.

Partitioning happens via scans. We can use segmented scans instead, which
‘reset’ at segment boundaries.

Accelerate July 11, 2024
18

Segments

Instead of performing two recursive calls,
we keep working on the entire array.

We mark segments in that array.
Each segment in the parallel algorithm corresponds to a call in the sequential
algorithm.

Partitioning happens via scans. We can use segmented scans instead, which
‘reset’ at segment boundaries.

Accelerate July 11, 2024
18

Segmented scans
A segmented scan can be defined in terms of a normal scan:

segmentedScanl f segmentBoundaries values = . . . scanl1 (segmented f) . . .

We can define our own combinators in terms of the basic combinators of
Accelerate.

Note that we represent segment boundaries as a vector of booleans.
Segments are sometimes also represented by a vector of segment lengths, but
that has more computational overhead in this case.

An implementation is available at
https://github.com/tmcdonell/containers-accelerate/blob/master/src/
Data/Array/Accelerate/Data/Sort/Quick.hs.

Accelerate July 11, 2024
19

https://github.com/tmcdonell/containers-accelerate/blob/master/src/Data/Array/Accelerate/Data/Sort/Quick.hs
https://github.com/tmcdonell/containers-accelerate/blob/master/src/Data/Array/Accelerate/Data/Sort/Quick.hs

How does it work?

We’ve now seen how you can use Accelerate.

But how does it work?

Accelerate July 11, 2024
20

The Accelerate compiler

Accelerate consists of a compiler, targetting multi-core CPUs and GPUs.

But it is only a library: it doesn’t require special trickery from the Haskell
compiler.

This works via a deep embedding.

Accelerate July 11, 2024
21

Deep embedding

Combinators in Accelerate build the representation of a computation.
They don’t compute anything yet.

Acc a is the representation or AST of an array computation.
Exp t is the representation or AST of a scalar computation.

run :: Acc a → a passes that representation to our compiler and executes the
compiled program.

Accelerate July 11, 2024
22

Deep embedding

Combinators in Accelerate build the representation of a computation.
They don’t compute anything yet.

Acc a is the representation or AST of an array computation.
Exp t is the representation or AST of a scalar computation.

run :: Acc a → a passes that representation to our compiler and executes the
compiled program.

Accelerate July 11, 2024
22

Deep embedding

Combinators in Accelerate build the representation of a computation.
They don’t compute anything yet.

Acc a is the representation or AST of an array computation.
Exp t is the representation or AST of a scalar computation.

run :: Acc a → a passes that representation to our compiler and executes the
compiled program.

Accelerate July 11, 2024
22

Deep embedding (simplified)
Instead of directly executing the computation:

add :: Exp Int→ Exp Int→ Exp Int
add x y = x + y

Accelerate July 11, 2024
23

Deep embedding (simplified)
Instead of directly executing the computation, combinators construct a
representation or AST of the computation:

add :: Exp Int→ Exp Int→ Exp Int
add x y = Add x y

Accelerate July 11, 2024
23

Deep embedding (simplified)
Instead of directly executing the computation, combinators construct a
representation or AST of the computation:

add :: Exp Int→ Exp Int→ Exp Int
add x y = Add x y

Data type Exp is the representation or AST of a program:
data Exp t where
Add :: Exp Int→ Exp Int→ Exp Int
ConstInt :: Int→ Exp Int
ConstBool :: Bool→ Exp Bool
. . .

Using a Generalized Algebraic Data Type (GADT), we can preserve the
type-safety during the compilation.

Accelerate July 11, 2024
23

Variables in the embedding
During the construction of the program, we can use variables, functions and
let-bindings just like we normally do in Haskell.

map (λx → 2 ∗ x + 1) xs

It would have been annoying if the embedding had its own syntax for
functions and variables, like:

map (fn “x” (2 ∗ var “x” + 1)) xs

The first is a higher-order embedding and is used in the public API.
It is more convenient for the user and provides more type-safety.

The second is a first-order embedding and is used internally.
It is easier to write program analyses and optimisations in such a
representation.

Accelerate July 11, 2024
24

Variables in the embedding
During the construction of the program, we can use variables, functions and
let-bindings just like we normally do in Haskell.

map (λx → 2 ∗ x + 1) xs

It would have been annoying if the embedding had its own syntax for
functions and variables, like:

map (fn “x” (2 ∗ var “x” + 1)) xs

The first is a higher-order embedding and is used in the public API.
It is more convenient for the user and provides more type-safety.

The second is a first-order embedding and is used internally.
It is easier to write program analyses and optimisations in such a
representation.

Accelerate July 11, 2024
24

Variables in the embedding
During the construction of the program, we can use variables, functions and
let-bindings just like we normally do in Haskell.

map (λx → 2 ∗ x + 1) xs

It would have been annoying if the embedding had its own syntax for
functions and variables, like:

map (fn “x” (2 ∗ var “x” + 1)) xs

The first is a higher-order embedding and is used in the public API.
It is more convenient for the user and provides more type-safety.

The second is a first-order embedding and is used internally.
It is easier to write program analyses and optimisations in such a
representation.

Accelerate July 11, 2024
24

Variables in the embedding
During the construction of the program, we can use variables, functions and
let-bindings just like we normally do in Haskell.

map (λx → 2 ∗ x + 1) xs

It would have been annoying if the embedding had its own syntax for
functions and variables, like:

map (fn “x” (2 ∗ var “x” + 1)) xs

The first is a higher-order embedding and is used in the public API.
It is more convenient for the user and provides more type-safety.

The second is a first-order embedding and is used internally.
It is easier to write program analyses and optimisations in such a
representation.

Accelerate July 11, 2024
24

Compile-time?

In deep embedded languages like Accelerate, there are two ‘compile times’:
• Host compile-time: the host language is compiled before running the
program.

• DSL compile-time: the compiler for the DSL is ran during the run-time of
the program, or with meta-programming (like Template Haskell) at host
compile-time.

Preferably, any problems with a program are reported during host
compile-time.
Verifying analyses thus preferably use the type system of the host language.

Accelerate July 11, 2024
25

Compile-time?

In deep embedded languages like Accelerate, there are two ‘compile times’:
• Host compile-time: the host language is compiled before running the
program.

• DSL compile-time: the compiler for the DSL is ran during the run-time of
the program, or with meta-programming (like Template Haskell) at host
compile-time.

Preferably, any problems with a program are reported during host
compile-time.
Verifying analyses thus preferably use the type system of the host language.

Accelerate July 11, 2024
25

Compiler pipeline

We have now seen how the input to
the compiler is constructed.

The compiler performs several passes
over the input:

Input
↓

Sharing recovery
↓

Fusion & other optimisations
↓

Code generation to LLVM IR
↓

LLVM compilation
↓

Machine code

Accelerate July 11, 2024
26

Compiler pipeline

We have now seen how the input to
the compiler is constructed.

The compiler performs several passes
over the input:

Input
↓

Sharing recovery

↓
Fusion & other optimisations

↓
Code generation to LLVM IR

↓
LLVM compilation

↓
Machine code

Accelerate July 11, 2024
26

Compiler pipeline

We have now seen how the input to
the compiler is constructed.

The compiler performs several passes
over the input:

Input
↓

Sharing recovery
↓

Fusion & other optimisations

↓
Code generation to LLVM IR

↓
LLVM compilation

↓
Machine code

Accelerate July 11, 2024
26

Compiler pipeline

We have now seen how the input to
the compiler is constructed.

The compiler performs several passes
over the input:

Input
↓

Sharing recovery
↓

Fusion & other optimisations
↓

Code generation to LLVM IR
↓

LLVM compilation
↓

Machine code

Accelerate July 11, 2024
26

Sharing recovery
Accelerate programs may be constructed using let-bindings in Haskell:

let xs = map (λx → . . .) . . .

in . . . xs . . . xs

This creates a tree (or graph) wheremap is present twice.

Sharing recovery converts trees with shared nodes to a tree with let-bindings.

Add let-bindings to the data type:

data Exp t where
Let :: Id→ Exp t1 → Exp t2 → Exp t2

Accelerate July 11, 2024
27

Sharing recovery
Accelerate programs may be constructed using let-bindings in Haskell:

let xs = map (λx → . . .) . . .

in . . . xs . . . xs

This creates a tree (or graph) wheremap is present twice.

Sharing recovery converts trees with shared nodes to a tree with let-bindings.

Add let-bindings to the data type:

data Exp t where
Let :: Id→ Exp t1 → Exp t2 → Exp t2

Accelerate July 11, 2024
27

Sharing recovery
Accelerate programs may be constructed using let-bindings in Haskell:

let xs = map (λx → . . .) . . .

in . . . xs . . . xs

This creates a tree (or graph) wheremap is present twice.

Sharing recovery converts trees with shared nodes to a tree with let-bindings.

Add let-bindings to the data type:

data Exp t where
Let :: Id→ Exp t1 → Exp t2 → Exp t2

Accelerate July 11, 2024
27

Sharing recovery
Accelerate programs may be constructed using let-bindings in Haskell:

let xs = map (λx → . . .) . . .

in . . . xs . . . xs

This creates a tree (or graph) wheremap is present twice.

Sharing recovery converts trees with shared nodes to a tree with let-bindings.

Add let-bindings to the data type:

data Exp t where
Let :: Id→ Exp t1 → Exp t2 → Exp t2

Accelerate July 11, 2024
27

Variables

And add variables:

data Exp t where
Let :: Id→ Exp t1 → Exp t2 → Exp t2
Var :: Id→ Exp t

What is the type of a variable?

That depends on the environment.

We already added type variable t for the result of an expression, let’s also add
a type variable env for the environment.

Accelerate July 11, 2024
28

Variables

And add variables:

data Exp t where
Let :: Id→ Exp t1 → Exp t2 → Exp t2
Var :: Id→ Exp t

What is the type of a variable?

That depends on the environment.

We already added type variable t for the result of an expression, let’s also add
a type variable env for the environment.

Accelerate July 11, 2024
28

Typed environments
The environment becomes a type-level list.
De Bruijn indices (for variable names) index into that list.

Consider this environment:

((((),Bool),Float), Int)

Accelerate July 11, 2024
29

Typed environments
The environment becomes a type-level list.
De Bruijn indices (for variable names) index into that list.

Consider this environment:

((((),Bool),Float), Int)

Accelerate July 11, 2024
29

Typed environments
The environment becomes a type-level list.
De Bruijn indices (for variable names) index into that list.

Consider this environment:

((((),Bool),Float), Int)
The most-recently introduced variable has type Int.
That variable has De Bruijn index 0 (assuming zero-based indices).

Accelerate July 11, 2024
29

Typed environments
The environment becomes a type-level list.
De Bruijn indices (for variable names) index into that list.

Consider this environment:

((((),Bool),Float), Int)
The first introduced variable has type Bool.
That variable has De Bruijn index 2 (assuming zero-based indices).

Accelerate July 11, 2024
29

GADTs for typed environments
When introducing a variable, we extend the list:

Let :: Exp env t1 → Exp (env, t1) t2 → Exp env t2

Define a data type Idx env t.
It guarantees that an index corresponds to a variable of type t in environment
env:

data Idx env t where
ZeroIdx :: Idx (env, t) t
SuccIdx :: Idx env t → Idx (env, s) t

Then we can add a constructor for variables in Exp:

Var :: Idx env t → Exp env t

Accelerate July 11, 2024
30

GADTs for typed environments
When introducing a variable, we extend the list:

Let :: Exp env t1 → Exp (env, t1) t2 → Exp env t2

Define a data type Idx env t.
It guarantees that an index corresponds to a variable of type t in environment
env:

data Idx env t where
ZeroIdx :: Idx (env, t) t
SuccIdx :: Idx env t → Idx (env, s) t

Then we can add a constructor for variables in Exp:

Var :: Idx env t → Exp env t

Accelerate July 11, 2024
30

GADTs for typed environments
When introducing a variable, we extend the list:

Let :: Exp env t1 → Exp (env, t1) t2 → Exp env t2

Define a data type Idx env t.
It guarantees that an index corresponds to a variable of type t in environment
env:

data Idx env t where
ZeroIdx :: Idx (env, t) t
SuccIdx :: Idx env t → Idx (env, s) t

Then we can add a constructor for variables in Exp:

Var :: Idx env t → Exp env t

Accelerate July 11, 2024
30

Fusion

• The DSL advocates splitting the program into many small steps
• Naive: one (parallel) loop per combinator
• Fusion: combine multiple combinators into one loop

Fusion minimizes:
• Number of (parallel) loops
• Number of (intermediate) arrays
• Number of memory operations

Accelerate July 11, 2024
31

Fusion

• The DSL advocates splitting the program into many small steps
• Naive: one (parallel) loop per combinator
• Fusion: combine multiple combinators into one loop

Fusion minimizes:
• Number of (parallel) loops
• Number of (intermediate) arrays
• Number of memory operations

Accelerate July 11, 2024
31

Fusion examples

map f (map g xs)

is coverted to:

map (f ◦ g) xs

Accelerate July 11, 2024
32

Fusion examples

This can also be fused:

fold (+) 0 (map f xs)

This cannot be expressed in the same language,
we have a different IR for after this optimisation.

Accelerate July 11, 2024
33

Conclusion

Accelerate makes data-parallelism accessible via an embedding in Haskell.
• Reuses the syntax and type system of Haskell:
No need to implement that ourselves

• Restricted to the syntax and type system of Haskell

Using GADTs, we can preserve type-safety in the compiler. The types
guarantee:

• The type of expressions
• The types of variables in the environment

Note that Haskell makes this easy; many other compilers only have type-safety
for the type of expressions, or neither of these.

Accelerate July 11, 2024
34

