
Advanced Functional Programming

Type Families and Data Kinds

Trevor L. McDonell

Utrecht University

1



Yesterday…

In the previous lecture, we saw some examples of programming with GADTs

• This allowed us to define rich types, enforcing all kinds of properties

• But we also ran into some limitations

2



Today

• A bit more on the Equal data type

• Kinds beyond *

• Programming with types

3



Equality type

We introduce Equal as a proof that two types are equal:

data Equal a b where
Refl :: Equal a a

We could even ‘prove’ some properties of the relation:

refl :: Equal a a
sym :: Equal a b -> Equal b a
trans :: Equal a b -> Equal b c -> Equal a c

4



Expressive power of equality

Equality proofs and phantom types are enough to ‘implement’ GADTs:

data Expr a
= LitI (Equal a Int) Int
| LitB (Equal a Bool) Bool
| IsZero (Equal a Bool) (Expr Int)
| Plus (Equal a Int) (Expr Int) (Expr Int)
| If (Expr Bool) (Expr a) (Expr a)

5



Safe vs. unsafe coercions

Using our equality function we can safely coerce between types:

coerce :: Equal a b -> a -> b
coerce Refl x = x

Question

Why does this type check?

Question

What about this definition:

coerce :: Equal a b -> a -> b
coerce p x = x

6



Safe vs. unsafe coercions

Using our equality function we can safely coerce between types:

coerce :: Equal a b -> a -> b
coerce Refl x = x

Question

Why does this type check?

Question

What about this definition:

coerce :: Equal a b -> a -> b
coerce p x = x

6



Aside: irrefutable patterns

Haskell also allows irrefutable patterns:

lazyHead ~(x:xs) = x

This does not force the list to weak head normal form.

7



Aside: irrefutable patterns

In tandem with GADTs this is particularly dangerous:

coerceL :: Equal a b -> a -> b
coerceL ~Refl x = x

Question

How could this cause well-typed program to crash with a type error?

foo :: Bool -> Int
foo b = coerceL undefined b

Apparently unrelated language features may interact in unexpected ways!

8



Aside: irrefutable patterns

In tandem with GADTs this is particularly dangerous:

coerceL :: Equal a b -> a -> b
coerceL ~Refl x = x

Question

How could this cause well-typed program to crash with a type error?

foo :: Bool -> Int
foo b = coerceL undefined b

Apparently unrelated language features may interact in unexpected ways!

8



Towards generic programming

We can use GADTs to reflect types as data:

data Type a where
INT :: Type Int
BOOL :: Type Bool
LIST :: Type a -> Type [a]
PAIR :: Type a -> Type b -> Type (a,b)

9



Safe dynamically typed values

We can define dynamically typed values by packing up a type representation with a value:

data Dynamic where
Dyn :: Type a -> a -> Dynamic

To unwrap these values safely, we check whether the types line up as expected:

cast :: Type a -> Dynamic -> Maybe a
cast t (Dyn t' x) =

case eqType t t' of
Just Refl -> Just x
_ -> Nothing

10



Safe dynamically typed values

We can define dynamically typed values by packing up a type representation with a value:

data Dynamic where
Dyn :: Type a -> a -> Dynamic

To unwrap these values safely, we check whether the types line up as expected:

cast :: Type a -> Dynamic -> Maybe a
cast t (Dyn t' x) =

case eqType t t' of
Just Refl -> Just x
_ -> Nothing

10



Generic programming

We can also define new functions by induction on the type structure:

f :: Type a -> a -> ...

In this way, we can define our own versions of functions such as show, read, equality, etc.

11



System FC

Haskell’s core language, System FC, is a typed lambda calculus, extended with data types and

pattern matching.

One of its more distinct features is coercions and casts.

• Coercions play the same role as our Equal data type;

• If two types are coercible, one can be cast to the other:

isZero :: (a ~ Int) => a -> Bool

There is quite a lot of work necessary to guarantee that this does not accidentally make the type

system unsound!

Pattern matching on GADTs introduces such coercions in the individual branches.

12



Problems with GADTs

toVec :: [a] -> Vec a ???

To define this function, we needed to reify natural numbers on the type level – defining a singleton

type SNat.

vappend :: Vec a n -> Vec a m -> Vec a ???

To define this function, we needed to construct an explicit relation describing how to add two

types, n and m.

13



Passing explicit Sums

In the last lecture, we saw how to pass explicit evidence explaining how to add two ‘type-level’

natural numbers:

data Sum m n s where
SumZero :: Sum Zero n n
SumSucc :: Sum m n s -> Sum (Succ m) n (Succ s)

But constructing this evidence by hand is tedious…

14



Multi-parameter type classes

We can automate this through a multi-parameter type class

class Summable m n s | m n -> s where
makeSum :: Sum m n s

instance Summable Zero n n where
makeSum = SumZero

instance Summable m n s => Summable (Succ m) n (Succ s) where
makeSum = SumSucc makeSum

append :: Summable m n s => Vec a m -> Vec a n -> Vec a s
append = vappend makeSum

15



Multi-parameter type classes

Type classes define relations between types:

• Eq defines a subset of all types that support equality;

• MonadState (from mtl) defines a subset of pairs of types s and m, where m supports

read/write operations on a state of type s

The Summable type class is special case of such relations—it is really defining a function between

types.

16



Multi-parameter type classes

For some time, multi-parameter type classes with functional dependencies were the only way in

Haskell to define such type-level computations.

But there has been a flurry of research in the last decade exploring alternative language

extensions.

... the interaction of functional dependencieswith other type-level features

such as existentials and GADTs is not well understood and possibly prob-

lematic.

—Kiselyov, Peyton Jones, Shan. Fun with type families.

17



Associated types and type families

Type classes let you capture an interface, such as monads (supporting bind and return), or

monoids (supporting an associative binary operator and identity element).

These interfaces can describe functions.

But what if we would like them to describe types.

18



Associated types

Associated types let you declare a type in a class declaration:

class Collects c where
type Elem c -- Associated type synonym
empty :: c
insert :: Elem c -> c -> c
toList :: c -> [Elem c]

Any instance of the Collects class must choose a type of elements, together with definitions for

the functions.

19



Associated types – examples

instance Eq e => Collects [e] where
type Elem [e] = e
...

instance Collects IntSet where
type Elem IntSet = Int
...

20



Addition through association

We can use such associated types to replace the functional dependencies we saw previously:

class Summable m n where
type TheSum m n
makeSum :: Sum m n (TheSum m n)

instance Summable Zero n where
type TheSum Zero n = n

instance Summable m n => Summable (Succ m) n where
type TheSum (Succ m) n = Succ (TheSum m n)

append :: Summable m n
=> Vec a m -> Vec a n -> Vec a (TheSum m n)

21



Associated types or multiparameter type?

Both approaches are similar in expressive power.

Multiparameter type classes with functional dependencies are no longer fashionable

• They can make type class resolution unpredictable

Associated types have gained traction in other languages

• Example: Rust, Swift

22



Type families

Associated types always require a class definition—even if we’re only interested in the types.

Type families build upon the technology that associated types provide, enabling you to write:

type family Sum m n
type instance Sum Zero n = n
type instance Sum (Succ m) n = Succ (Sum m n)

This looks much more like regular programming…

23



Closed type families

If we piggyback on the associated type machinery, however, all our type families are open—we can

add bogus definitions:

type instance Sum n Zero = Zero

The more modern closed type families allow you to define a function between types using pattern

matching:

type family Sum n m where
Sum Zero n = n
Sum (Succ n) m = Succ (Sum n m)

GHC will try to match a given type against the patterns one by one, taking the first branch that

matches successfully.

24



Closed type families

If we piggyback on the associated type machinery, however, all our type families are open—we can

add bogus definitions:

type instance Sum n Zero = Zero

The more modern closed type families allow you to define a function between types using pattern

matching:

type family Sum n m where
Sum Zero n = n
Sum (Succ n) m = Succ (Sum n m)

GHC will try to match a given type against the patterns one by one, taking the first branch that

matches successfully.

24



Apartness for closed type families

GHC only moves to the next branch if it know that the previous one may never match.

• The types are apart from the pattern

> :kind! Sum n (Succ m)
-- does not reduce further!

25



The need for more kinds

Furthermore, all our ‘type level’ code is essentially untyped.

type instance Sum Bool Int = Char

We want “type-level types”, as we have in the term-level.

26



Kinds

So far we have seen that two different forms of kinds:

• all types have kind *
• given two kinds k1 and k2, we can form the kind k1 -> k2, corresponding to the type

constructor taking something of kind k1 to produce a type of kind k2

This is essentially the simply typed lambda calculus with one base type.

As soon as we do richer programming with types, however, we would like stronger guarantees

about the safety of the type level computations that we write.

27



Kinds

So far we have seen that two different forms of kinds:

• all types have kind *
• given two kinds k1 and k2, we can form the kind k1 -> k2, corresponding to the type

constructor taking something of kind k1 to produce a type of kind k2

This is essentially the simply typed lambda calculus with one base type.

As soon as we do richer programming with types, however, we would like stronger guarantees

about the safety of the type level computations that we write.

27



Promotion

data Zero
data Succ n

data Nat = Zero | Succ Nat

How can we ensure all numbers in our types to be built from Zero and Succ?

28



Promotion

Using the DataKinds language extension we can introduce new kinds and automatically promote

data constructors into their type-level variants:

{-# LANGUAGE DataKinds #-}

data Nat = Zero | Succ Nat

This declaration introduces:

• a new kind Nat
• a type 'Zero :: Nat
• a type 'Succ :: Nat -> Nat

29



Example: booleans

-- the usual definition of booleans
data Bool = True | False

-- 'not' function on values
not :: Bool -> Bool
not True = False
not False = True

-- 'not' function on types
type family Not (a :: Bool) :: Bool where

Not 'True = 'False
Not 'False = 'True

30



Type-level literals

GHC takes the idea of programming with types quite far.

It has added support and syntax for:

• type-level strings

• type-level lists

• type-level integers

31



List membership

Member x xs should be true if x is a member of the type-level list xs.

class Member x xs
instance Member x (x ': xs)
instance Member x xs => Member x (y ': xs)
instance TypeError ('Text "Not a member: " ':<>: 'ShowType x)

=> Member x '[]

Question

Is this correct?

instance {-# OVERLAPS #-}
Member x (x ': xs)

instance {-# OVERLAPPABLE #-}
Member x xs => Member x (y ': xs)

32



List membership

Member x xs should be true if x is a member of the type-level list xs.

class Member x xs
instance Member x (x ': xs)
instance Member x xs => Member x (y ': xs)
instance TypeError ('Text "Not a member: " ':<>: 'ShowType x)

=> Member x '[]

Question

Is this correct?

instance {-# OVERLAPS #-}
Member x (x ': xs)

instance {-# OVERLAPPABLE #-}
Member x xs => Member x (y ': xs)

32



The case against overlapping instances

1. Overlapping instances make type resolution brittle

• Which instance is selected depends on how much we know about a type

2. Overlapping instances are not modular

• Adding a new instance which overlaps may render previous resolution incorrect

33



List membership with a closed type family

type family Member' x xs where
Member' x '[] = 'False
Member' x (x ': xs) = 'True
Member' x (y ': xs) = Member' x xs

type Member x xs = Member' x xs ~ 'True

• The second branch is non-linear, x is repeated

• Not allowed in term-level pattern matching

• Fine with closed type families

• Member defines a synonym for a constraint

• In GHC, constraints are just types of the special Constraint kind

34



Polymorphic kinds

Which is the kind of Member'?

Member' :: * -> [*] -> Bool
Member' :: Nat -> [Nat] -> Bool

Kinds may be polymorphic, as types are!

Member' :: k -> [k] -> Bool

35



Polymorphic kinds

Which is the kind of Member'?

Member' :: * -> [*] -> Bool
Member' :: Nat -> [Nat] -> Bool

Kinds may be polymorphic, as types are!

Member' :: k -> [k] -> Bool

35



Type-level application

data Apply f a = MkApply (f a)

Question

What is the kind of Apply?

> :set -XPolyKinds
> :info Apply
type role Apply representational nominal
data Apply (f :: k -> *) (a :: k) = MkApply (f a)

36



Proxy data types

Consider the read function:

read :: Read a => String -> a

How do we fix the type we want to get?

First solution: annotate it

read "123" :: Int

In many cases, the type can be inferred instead.

37



Proxy data types

Consider the read function:

read :: Read a => String -> a

How do we fix the type we want to get?

First solution: annotate it

read "123" :: Int

In many cases, the type can be inferred instead.

37



Proxy data types

Second solution: fix it via another parameter

-- Wrap it with an additional argument
read' :: Read a => a -> String -> a
read' _ = read
-- And use it like this
read' (undefined :: Int) "123"

• The first argument is never touched

• Gives valuable information to the compiler

These are called proxy arguments.

38



Proxy data types

-- Polymorphic kind!
data Proxy (a :: k) = Proxy
-- The proxy is also ignored
read' :: Read a => Proxy a -> String -> a
read' _ = read
-- To use it you create a Proxy value
read (Proxy :: Proxy Int) "123"

Question

What is the benefit of using Proxy?

39



(No) proxy data types

Third solution: explicit type application

read @Int "123"

The TypeApplications extension has been available since GHC-8.

40



Outlook: writing a webserver with Servant

Servant is a library for describing web APIs. From such a description, it will generate

documentation, a simple web server, a JavaScript client, etc.

• Instead of describing the APIs using Haskell values—you describe the API as a (complex)

Haskell type

• And then generate any desired functionality from it

type HackageAPI =
"users" :> Get '[JSON] [UserSummary]

:<|> "user" :> Capture "username" Username
:> Get '[JSON] UserDetailed

:<|> "packages" :> Get '[JSON] [Package]

41



Summary

GADTs give you more power to define interesting types

• We can decorate our types with more specific information

• We can represent data that is computationally irrelevant, but guides the type checker

But we still cannot do any interesting computation

• We need to use type classes or type families

• We end up mirroring expression-level concepts on the type level (e.g. natural numbers)

The ‘value language’ and ‘type language’ live in very different worlds…

42


