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Today’s lecture

Generalized algebraic data types (GADTs)
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A datatype

data Tree a = Leaf

| Node (Tree a) a (Tree a)

This definition introduces:

• a new datatype Tree of kind * -> * .

• two constructor functions

Leaf :: Tree a

Node :: Tree a -> a -> Tree a -> Tree a

• the possiblity to use the constructors Leaf and Node in patterns.
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Alternative syntax

Observation
The types of the constructor functions contain sufficient information to describe the datatype.

data Tree :: * -> * where

Leaf :: Tree a

Node :: Tree a -> a -> Tree a -> Tree a
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Algebraic datatypes

Constructors of an algebraic datatype T must:

• target the type T,

• result in a simple type of kind *, i.e., T a1 ... a n where a1, ..., a n are distinct type

variables.
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Another example

data Either :: * -> * -> * where

Left :: a -> Either a b

Right :: b -> Either a b

Both constructors produce values of type Either a b.

Does it make sense to lift these restrictions?
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Excursion: Expression language

Imagine we’re implementing a small programming language in Haskell:

data Expr =

LitI Int

| LitB Bool

| IsZero Expr

| Plus Expr Expr

| If Expr Expr Expr
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Excursion: Expression language

Alternatively, we could redefine the data type as follows:

data Expr :: * where

LitI :: Int -> Expr

LitB :: Bool -> Expr

IsZero :: Expr -> Expr

Plus :: Expr -> Expr -> Expr

If :: Expr -> Expr -> Expr -> Expr
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Syntax: concrete vs abstract

Imagined concrete syntax:

if isZero (0 + 1) then False else True

Abstract syntax:

If (IsZero (Plus (LitI 0) (LitI 1)))

(LitB False)

(LitB True)
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Type errors

It is all too easy to write ill-typed expressions such as:

If (LitI 0) (LitB False) (LitI 1)

How can we prevent programmers from writing such terms?
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Phantom types

At the moment, all expressions have the same type:

data Expr =

LitI Int

| LitB Bool

....

We would like to distinguish between expressions of different types.

To do so, we add an additional type parameter to our expression data type.
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Phantom types

data Expr a =

LitI Int

| LitB Bool

| IsZero (Expr Int)

| Plus (Expr Int) (Expr Int)

| If (Expr Bool) (Expr a) (Expr a)

Note: the type variable a is never actually used in the data type for expressions.

We call such type variables phantom types.
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Constructing well typed terms

Rather than expose the constructors of our expression language, we can instead provide a

well-typed API for users to write terms:

litI :: Int -> Expr Int

litI = LitI

plus :: Expr Int -> Expr Int -> Expr Int

plus = Plus

isZero :: Expr Int -> Expr Bool

isZero = IsZero

This guarantees that users will only ever construct well-typed terms! But what about writing an

interpreter…
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Evaluation

Before we write an interpreter, we need to choose the type that it returns.

Our expressions may evaluate to booleans or integers:

data Val =

VInt Int

| VBool Bool

Defining an interpreter now boils down to defining a function:

eval :: Expr a -> Val
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Evaluation

eval :: Expr a -> Val

eval (LitI n) = VInt n

eval (LitB b) = VBool b

eval (IsZero e) =

case eval e of

VInt n -> VBool (n == 0)

_ -> error "type error"

eval (Plus e1 e2) =

case (eval e1, eval e2) of

(VInt n1, VInt n2) -> VInt (n1 + n2)

_ -> error "type error"
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Evaluation (contd.)

• Evaluation code is mixed with code for handling type errors.

• The evaluator uses tags (i.e., constructors) to dinstinguish values – these tags are maintained

and checked at run time.

• Run-time type errors can, of course, be prevented by writing a type checker or using

phantom types.

• Even if we know that we only have type-correct terms, the Haskell compiler does not enforce

this.
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Beyond phantom types

What if we encode the type of the term in the Haskell type?

data Expr :: * -> * where

LitI :: Int -> Expr Int

LitB :: Bool -> Expr Bool

IsZero :: Expr Int -> Expr Bool

Plus :: Expr Int -> Expr Int -> Expr Int

If :: Expr Bool -> Expr a -> Expr a -> Expr a

Each expression has an additional type argument, representing the type of values it stores.
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GADTs

GADTs lift the restriction that all constructors must produce values of the same type.

• Constructors can have more specific return types.

• Interesting consequences for pattern matching:

• when case-analyzing an Expr Int, it could not be constructed by Bool or IsZero;

• when case-analyzing an Expr Bool, it could not be constructed by Int or Plus;

• when case-analyzing an Expr a, once we encounter the constructor IsZero in a pattern, we

know that we must be dealing with an Expr Bool;

• …
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Evaluation revisited

eval :: Expr a -> a

eval (LitI n) = n

eval (LitB b) = b

eval (IsZero e) = (eval e) == 0

eval (Plus e1 e2) = eval e1 + eval e2

eval (If e1 e2 e3)

| eval e1 = eval e2

| otherwise = eval e3

• No possibility for run-time failure; no tags required on our values.

• Pattern matching on a GADT requires a type signature. Why?
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Type signatures are required …

data X :: * -> * where

C :: Int -> X Int

D :: X a

E :: Bool -> X Bool

f (C n) = [n] -- (1)

f D = [] -- (2)

f (E n) = [n] -- (3)

What is the type of f, with/without (3)? What is the (probable) desired type?

f :: X a -> [Int] -- (1) only

f :: X b -> [c] -- (2) only

f :: X a -> [Int] -- (1) + (2)
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Extending our language

Let us extend the expression types with pair construction and projection:

data Expr :: * -> * where

...

Pair :: Expr a -> Expr b -> Expr (a, b)

Fst :: Expr (a,b) -> Expr a

Snd :: Expr (a,b) -> Expr b

For Fst and Snd, the type of the non-projected component is ‘hidden’ – that is, it is not visible from

the type of the compound expression.

Lab exercise
Extend the evaluation function accordingly. What about adding an Either type?
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GADTs

GADTs have become one of the more popular Haskell extensions.

The ‘classic’ example for motivating GADTs is interpreters for expression languages, such as the

one we have seen here.

However, these richer data types offer many other applications.

In particular, they let us program with types in interesting new ways.
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Prelude.head: empty list

> myComplicatedFunction 42 "inputFile.csv"

*** Exception: Prelude.head: empty list

Can we use the type system to rule out such exceptions before a program is run?

To do so, we’ll introduce a new list-like datatype that records the length of the list in its type.
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Natural numbers and vectors

Natural numbers can be encoded as types – no constructors are required.

data Zero

data Succ a

Vectors are lists with a fixed number of elements:

data Vec :: * -> * -> * where

Nil :: Vec a Zero

Cons :: a -> Vec a n -> Vec a (Succ n)
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Type-safe head and tail

head :: Vec a (Succ n) -> a

head (Cons x xs) = x

tail :: Vec a (Succ n) -> Vec a n

tail (Cons x xs) = xs

Question
Why is there no case for Nil is required?

Actually, a case for Nil results in a type error.
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More functions on vectors

map :: (a -> b) -> Vec a n -> Vec b n

map f Nil = Nil

map f (Cons x xs) = Cons (f x) (map f xs)

zipWith :: (a -> b -> c) ->

Vec a n -> Vec b n -> Vec c n

zipWith op Nil Nil = Nil

zipWith op (Cons x xs) (Cons y ys) =

Cons (op x y) (zipWith op xs ys)

We can require that the two vectors have the same length!

This lets us rule out bogus cases.
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Yet more functions on vectors

snoc :: Vec a n -> a -> Vec a (Succ n)

snoc Nil y = Cons y Nil

snoc (Cons x xs) y = Cons x (snoc xs y)

reverse :: Vec a n -> Vec a n

reverse Nil = Nil

reverse (Cons x xs) = snoc xs x

What about appending two vectors, analogous to the (++) operation on lists?
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Problematic functions

• What is the type of our append function?

vappend :: Vec a m -> Vec a n -> Vec a ???

How can we add two types, n and m?

• Suppose we want to convert from lists to vectors:

fromList :: [a] -> Vec a n

Where does the type variable n come from? What possible values can it have?
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Writing vector append

There are multiple options to solve that problem:

• construct explicit evidence,

• use a type family (more on that in the next lecture).
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Explicit evidence

Given two ‘types’ n and m, what is their sum?

We can define a GADT describing the graph of the addition function:

data Sum :: * -> * -> * -> * where

SumZero :: Sum Zero n n

SumSucc :: Sum m n s ->

-> Sum (Succ m) n (Succ s)

Using this function, we can now define append as follows:

append :: Sum m n s -> Vec a m -> Vec a n -> Vec a s

append SumZero Nil ys = ys

append (SumSucc p) (Cons x xs) ys =

Cons x (append p xs ys)
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Passing explicit evidence

This approach has one major disadvantage: we must construct the evidence, the values of type

Sum n m p, by hand every time we wish to call append.

We could use a multi-parameter type class with functional dependencies to automate this

construction…
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Converting between lists and vectors

It is easy enough to convert from a vector to a list:

toList :: Vec a n -> [a]

toList Nil = []

toList (Cons x xs) = x : toList xs

This simply discards the type information we have carefully constructed.

32



Converting between lists and vectors

It is easy enough to convert from a vector to a list:

toList :: Vec a n -> [a]

toList Nil = []

toList (Cons x xs) = x : toList xs

This simply discards the type information we have carefully constructed.

32



Converting between lists and vectors

Converting in the other direction, however is not as easy:

fromList :: [a] -> Vec a n

fromList [] = Nil

fromList (x:xs) = Cons x (fromList xs)

Question
Why doesn’t this definition type check?

The type says that the result must be polymorphic in n, that is, it returns a vector of any length,

rather than a vector of a specific (unknown) length.
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From lists to vectors

We can

• specify the length of the vector being constructed in a separate argument,

• hide the length using an existential type.
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From lists to vectors (contd.)

Suppose we simply pass in a regular natural number, Nat:

fromList :: Nat -> [a] -> Vec a n

fromList Zero [] = Nil

fromList (Succ n) (x:xs) = Cons x (fromList n xs)

fromList _ _ = error "wrong length!"

This still does not solve our problem – there is no connection between the natural number that we

are passing and the n in the return type.
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Singletons

We need to reflect type-level natural numbers on the value level.

To do so, we define a (yet another) variation on natural numbers:

data SNat :: * -> * where

SZero :: SNat Zero

SSucc :: SNat n -> SNat (Succ n)

This is a singleton type – for any n, the type SNat n has a single inhabitant (the number n).
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From lists to vectors

data SNat :: * -> * where

SZero :: SNat Zero

SSucc :: SNat n -> SNat (Succ n)

fromList :: SNat n -> [a] -> Vec a n

fromList SZero [] = Nil

fromList (SSucc n) (x:xs) = Cons x (fromList n xs)

fromList _ _ = error "wrong length!"

Question
This function may still fail dynamically. Why?
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From lists to vectors

We can

• specify the length of the vector being constructed in a separate argument,

• hide the length using an existential type.

What about the second alternative?
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From lists to vectors

We can define a wrapper around vectors, hiding their length:

data VecAnyLen :: * -> * where

VecAnyLen :: Vec a n -> VecAnyLen a

A value of type VecAnyLen a stores a vector of some length with values of type a.
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From lists to vectors

We can convert any list to a vector of some length as follows:

fromList :: [a] -> VecAnyLen a

fromList [] = VecAnyLen Nil

fromList (x:xs) =

case fromList xs of

VecAnyLen ys -> VecAnyLen (Cons x ys)
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From lists to vectors

We can combine the two approaches and include a SNat in the packed type:

data VecAnyLen :: * -> * where

VecAnyLen :: SNat n -> Vec a n -> VecAnyLen a

Question
How does the conversion function change?

41



Calling functions on vectors

Given two vectors xs : Vec a n and ys : Vec a m.

Suppose I want to zip these vectors together using:

zipVec :: Vec a n -> Vec b n -> Vec (a,b) n

Question
What happens when I call zip xs ys?
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Comparing the length of vectors

We can define a boolean function that checks when two vectors have the same length

equalLength :: Vec a m -> Vec b n -> Bool

equalLength Nil Nil = True

equalLength (Cons _ xs) (Cons _ ys) =

equalLength xs ys
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Comparing the length of vectors

Such a function is not very useful…

Suppose I want to use this to check the lengths of my vectors:

if equalLength xs ys

then zip xs ys

else error "Wrong lengths"

Question
Will this type check?

No! Just because equalLength xs ys returns True, does not guarantee that m and n are equal…

How can we enforce that two types are indeed equal?
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Equality type

Just as we saw for the Sum type, we can introduce a GADT that represents a ‘proof’ that two types

are equal:

data Equal :: * -> * -> * where

Refl :: Equal a a

We can even ‘prove’ properties of our equality relation:

refl :: Equal a a

sym :: Equal a b -> Equal b a

trans :: Equal a b -> Equal b c -> Equal a c

Question
How are these functions defined? What happens if you don’t pattern match on the Refl

constructor?

45



Equality type

Just as we saw for the Sum type, we can introduce a GADT that represents a ‘proof’ that two types

are equal:

data Equal :: * -> * -> * where

Refl :: Equal a a

We can even ‘prove’ properties of our equality relation:

refl :: Equal a a

sym :: Equal a b -> Equal b a

trans :: Equal a b -> Equal b c -> Equal a c

Question
How are these functions defined? What happens if you don’t pattern match on the Refl

constructor?

45



Equality type

Just as we saw for the Sum type, we can introduce a GADT that represents a ‘proof’ that two types

are equal:

data Equal :: * -> * -> * where

Refl :: Equal a a

We can even ‘prove’ properties of our equality relation:

refl :: Equal a a

sym :: Equal a b -> Equal b a

trans :: Equal a b -> Equal b c -> Equal a c

Question
How are these functions defined? What happens if you don’t pattern match on the Refl

constructor?

45



Equality type

Instead of returning a boolean, we can now provide evidence that the length of two vectors is

equal:

eqLength :: Vec a m -> Vec b n -> Maybe (Equal m n)

eqLength Nil Nil = Just Refl

eqLength (Cons x xs) (Cons y ys) =

case eqLength xs ys of

Just Refl -> Just Refl

Nothing -> Nothing

eqLength _ _ = Nothing
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Using equality

test :: Vec a m -> Vec b (Succ n) -> Maybe (a,b)

test xs ys =

case eqLength xs ys

Just Refl -> head (zip xs ys)

_ -> Nothing

Question
Why does this type check?
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Expressive power of equality

The equality type can be used to encode other GADTs.

Recall our expression example using phantom types:

data Expr a =

LitI Int

| LitB Bool

| IsZero (Expr a)

| Plus (Expr a) (Expr a)

| If (Expr a) (Expr a) (Expr a)
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Expressive power of equality

We can replace this with a phantom type

data Expr a =

LitI (Equal a Int) Int

| LitB (Equal a Bool) Bool

| IsZero (Equal a Bool) (Equal b Int) (Expr b)

| Plus (Equal a Int) (Expr a) (Expr a) (Expr a)

...
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Safe vs unsafe coercions

Using our equality function we can safely coerce between types:

coerce :: Equal a b -> a -> b

coerce Refl x = x

Question
Why does this type check?

Question
What about this definition:

coerce :: Equal a b -> a -> b

coerce p x = x
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Aside: irrefutable patterns

Haskell also allows irrefutable patterns:

lazyHead ~(x:xs) = x

This does not force the list to weak head normal form.
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Aside: irrefutable patterns

In tandem with GADTs this is particularly dangerous:

coerceL :: Equal a b -> a -> b

coerceL ~Refl x = x

Question
How could this cause well-typed program to crash with a type error?

foo :: Bool -> Int

foo b = coerceL undefined b

Apparently unrelated language features may interact in unexpected ways!
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Outlook generic programming: Reflecting types

We can even use GADTs to reflect types themselves as data:

data Type :: * -> * where

INT :: Type Int

BOOL :: Type Bool

LIST :: Type a -> Type [a]

PAIR :: Type a -> Type b -> Type (a,b)
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Safe dynamically typed values

We can define dynamically typed values by packing up a type representation with a value:

data Dynamic :: * where

Dyn :: Type a -> a -> Dynamic

To unwrap these values safely, we check whether the types line up as expected:

coerce :: Type a -> Dynamic -> Maybe a

coerce t (Dyn t' x) =

case eqType t t'

Just Refl -> Just x

_ -> Nothnig
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Generic programming

We can also define new functions by induction on the type structure:

f :: Type a -> ... a ...

In this way, we can define our own versions of functions such as show, read, equality, etc.
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Summary

• GADTs can be used to encode advanced properties of types in the type language.

• We end up mirroring expression-level concepts on the type level (e.g. natural numbers).

• GADTs can also represent data that is computationally irrelevant and just guides the type

checker (equality proofs, evidence for addition).

Such information could ideally be erased, but in Haskell, we can always cheat via undefined

:: Equal Int Bool…

• All complicated case expressions using GADTs can be compiled to a simple language – GHC

Core.
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The Lambda Calculus

• Introduced by Church 1936 (or even earlier).

• Formal language based on variables, function abstraction and application (substitution).

• Allows to express higher-order functions naturally.

• Equivalent in computational power to a Turing machine.

• Is at the basis of functional programming languages such as Haskell.
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What and why?

• A simple language with relatively few concepts.

• Easy to reason about.

• Original goal: reason about expressiveness of computations.

• Today more: core language for playing with all sorts of language features.

• Many flavours: untyped, typed, added constants and constructs.
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Lambda calculus: definition

There are only three constructs:

e ::= x (variables)

| e e (application)

| λ x → e (abstraction)
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Conventions

• Note: application associates to the left:

a b c = (a b) c

• Note: only unary functions and unary application – but we write

λ x y → e for λ x → (λ y → e).

• Note: the function body of a lambda extends as far as possible to the right:

λ x → e f should be read as λ x → (e f)
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Definitions

• We usually consider terms equal up to renaming (alpha equivalence);

• The central computation rule is beta reduction:

(λ x → e) (a) reduces to e [x/a]

That is, the body of the lambda e where all the variables x are replaced with the term a.
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Applications?

It seems as if we can do nothing useful with the lambda calculus.

There are no constants – no numbers, for instance.

But it turns out that we can encode recursion, numbers, booleans, and just about any other data

type.
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Church numerals

zero ≡ λ s z → z

one ≡ λ s z → (s z)

two ≡ λ s z → (s (s z))

three ≡ λ s z → (s (s (s z)))

...

So far, so good, but can we calculate with these numbers?
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Addition

suc ≡ λ n → λ s z → (s (n s z)))

add ≡ λ m n → m suc n

Does this work as expected?

suc two

(λ n → (λ s z → (s (n s z)))) two

λ s z → (s (two s z))

λ s z → (s (s (s z)))
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Other data types?

This illustrates how we can represent numbers as functions – but it turns out we can also represent

booleans using lambda terms, or just about any (simple) Haskell data type.

But what about recursion?
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Fixed-point combinators

Many fixed-point combinators can be defined in the untyped lambda calculus.

Here is one of the smallest and most famous ones, called Y.

Y ≡ λ f → (λ x → (f (x x))) (λ x → (f (x x)))
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Verification that Y is a fixed-point combinator

Y f

≡

(λ x → (f (x x))) (λ x → (f (x x)))

≡

f ((λ x → (f (x x))) (λ x → (f (x x))))

≡

f (Y f)
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What else?

There is still plenty missing to define a full programming language.

But the heart of Haskell – the lambda calculus – is similar in computing power to Turing machines.

But we can represent lambda terms using an even more simple language – namely that of

combinatory logic.
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Even Simpler

A straightforward implementation of the lambda calculus may give rise to abitrary large reduction

steps. We can represent all lambda expressions using only three combinators with the following

reduction behaviour:

S f g x = (f x) (g x)

K y x = y

I x = x
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Translation

Given a lambda term of the form – how can we translate this to an expression using SKI?

data SKI = Var String | S | K | I | App SKI SKI

toSKI :: Lambda -> SKI

toSKI (Var x) = Var x

toSKI (App t1 t2) = (toSKI t1) `App`(toSKI t2)

toSKY (Lam x t) = remove x (toSKI t)

The auxiliary function remove does the actual work…
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Bracket abstraction

remove :: Var -> Lambda -> SKI

remove x (Var y)

| x == y = I

| otherwise = K `App` y

remove x (App t1 t2) =

S `App` (remove (App t1 x))

`App` (remove (App t2 x))

This is sometimes called bracket abstraction.

Note: there is no case for lambdas – why?
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Intuition

What’s going on?

S f g x = (f x) (g x)

K y x = y

I x = x

S is duplicating a variable; K is discarding a variable; I is using a variable.

Bracket abstraction simply explains how to route the argument of a function to the variable’s

occurrences in the lambda’s body.
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Alternatives

Haskell Curry proposed the following combinators:

B x y z = x (y z)

C x y z = x z y

K x y = x

W x y = x y y

Here B ‘routes arguments’ to the left only; C ‘routes arguments’ to the right; and W duplicates its

inputs.
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Even Simpler

The combinator I is superfluous:

S K K x → (K x) (K x) → x

and hence

I = S K K
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Even Simpler

In 1989 Jeroen Fokker invented:

X = λ f → (f S f3)

f3 = λ p _ _ → p -- first of three

with which we can define K as follows:

K y x → X X y x

Does it reduce as expected?

→ X S f3 y x

→ S S f3 f3 y x

→ S f3 (f3 f3) y x

→ f3 y (f3 f3 y) x

→ y
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Even simpler

Check for yourself:

S = X (X X)

Labs
In the labs, we have several exercises about representing lambda terms using GADTs and

translating lambda terms to SKI combinators.
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Back to Haskell

This is nice – but what does this have to do with Haskell?

GHC translates to an intermediate language: GHC Core.

GHC Core is really little more than a (typed) lambda calculus.

You can read the spec on GitHub.

77
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Core sketch

GHC Core is based on System Fc – a typed lambda calculus extended with type coercions.

• variables, lambdas, and application;

• literals;

• let bindings;

• case expressions;

• coercions – used to implement GADTs amongst other things;

• ‘ticks’ – used for HPC to track program coverage.

Inspecting core can be useful to see how code is generated and optimized.
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Generating core

alias ghci-core="ghci -ddump-simpl \

-dsuppress-idinfo -dsuppress-coercions \

-dsuppress-type-applications \

-dsuppress-uniques -dsuppress-module-prefixes"

The following Haskell code and corresponding Core:

f :: Int -> Int

f x = x + 1

f :: Int -> Int

f = \ (x :: Int) ->

case x of _ { I# x1 -> I# (+# x1 1) }
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What we haven’t discussed yet

Types
Compare

false ≡ λ t f -> f

zero ≡ λ s z -> z

We can easily write terms that do not make sense in lambda calculus; Haskell has types to prevent

that.

Overloading
In Haskell, functions can be overloaded using type classes. How can such overloading be resolved

and desugared?
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What we haven’t discussed yet – contd.

Laziness
Haskell makes use of a particular evaluation strategy called lazy evaluation. We have not looked at

evaluation strategies at all so far.

Side effects
The lambda calculus has no notion of effects, not even encapsulated effects such as Haskell offers

with IO. So the behaviour of IO cannot be described by reduction to the lambda calculus.

Yet the lambda calculus is powerful enough to describe almost all of Haskell!
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Bonus slides about Church encoding, recursion & pattern matching
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Pairs

pair ≡ λ x y → (λ p → (p x y))

fst ≡ λ p → (p (λ x y → x))

snd ≡ λ p → (p (λ x y → y))

The function pair remembers its two parameters and returns them when asked by its third

parameter.
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How do you come up with these definitions?
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Church encoding for arbitrary datatypes

There is a correspondence between the so-called fold (or catamorphism or eliminator) for a

datatype and its Church encoding.

Haskell:

data Nat = Suc Nat | Zero

foldNat Zero s z = z

foldNat (Suc n) s z = s (foldNat n s z)

Lambda calculus:

zero ≡ λ s z → z

suc n ≡ λ s z → (s (n s z))
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Church encoding for arbitrary datatypes – contd.

Haskell:

data Bool = True | False

foldBool True t f = t

foldBool False t f = f

Lambda calculus:

true ≡ λ t f → t

false ≡ λ t f → f

Note that foldBool is just ifthenelse again.
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Church encoding for arbitrary datatypes – contd.

Haskell:

data Pair x y = Pair x y

foldPair (Pair x y) p = p x y

Lambda calculus:

pair ≡ λ x y → (λ p → (p x y))
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Encoding vs. adding constants

The fact that we can encode certain entities in the lambda justifies that we can add them as

constants to the language without changing the nature of the language.
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Example (adding Booleans)

e ::= true

| false

| if e then e else e

Once we have new forms of expressions, we need more than just beta-reduction:

if true then e1 else e2 → e1

if false then e1 else e2 → e2
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Church Booleans

true ≡ λ t f → t

false ≡ λ t f → f

ifthenelse ≡ λ c t e → c t e

The function ifthenelse is almost the identity function.

and ≡ λ x y → ifthenelse x y false

and ≡ λ x y → x y false

or ≡ λ x y → ifthenelse x true y

or ≡ λ x y → x true y

The function isZero takes a number and returns a Bool.

isZero ≡ λ n → (n (λ x → false) true)
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Towards Haskell

These definitions are somewhat magical – but all form examples of a more general encoding of

data types into lambda terms, known as the Church encoding.

Haskell is based on a typed lambda calculus, extended with constructs for type-equalities and

conversions necessary to account for GADTs.

Yet, so far it seems hard to believe that we can desugar Haskell to some form of lambda calculus.
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Binding names with let

Haskell allows us to bind identifiers to expressions in the language using let.

We have only introduced informal abbreviations for lambda terms so far such as true or isZero.
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Binding names with let – contd.

In fact, let can simply be desugared to a lambda binding.

let x = e1 in e2 ≡ (λ x → (e2)) e1

Note that this does not work if x is a recursive binding or if you want to preserve sharing.

What about recursion, then?
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Recursion

Haskell example

fac = \ n → if n == 0 then 1 else n * fac (n - 1)

fac = fix

(\ fac n → if n == 0 then 1

else n * fac (n - 1))

The desired function fac can be viewed as a fixed point of the related non-recursive function fac’.
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Fixed points

A fixed-point combinator is a combinator fix with the property that for any f,

-- Using recursion directly

fix f = f (fix f)

In particular,

fix fac' = fac' (fix fac')

thus fix fac’ is a fixed point of fac.
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Recap

It is thus possible to desugar a recursive Haskell definition into the lambda calculus by translating

recursion into applications of fix.

Conversely, we can justify adding recursion as a construct to the lambda calculus without

changing its essential nature.
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General vs. structural recursion

Note that most recursive functions can actually be defined without a fixed-point combinator. We

have already defined add:

add ≡ λ m n → (m suc n)

In Haskell, add would be recursive

data Nat = Suc Nat | Zero

add (Suc m) n = Suc (add m n)

add Zero n = n

but can also be defined in terms of foldNat:

add m n = foldNat m Suc n
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General vs. structural recursion – contd.

Functions defined in terms of a fold function are called structurally recursive.

Recursion using the fixed-point combinator is called general recursion.

Writing functions using general recursion is often perceived as simpler or more direct.

Structural recursion is often more well-behaved. For instance, for many datatypes it can be proved

that if the arguments to the fold terminate, the structurally recursive function also terminates.
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Pattern matching

In Haskell we can define functions using pattern matching:

data Nat = Suc Nat | Zero

pred (Suc m) = m

pred Zero = Zero

Question
How can we define pred for the Church numerals?
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Case function

Alternatively, pattern matching via case on a natural number can be captured as a function:

caseNat :: Nat → (Nat → r) → r → r

caseNat (Suc n) s z = s n

caseNat Zero s z = z

pred = \ m → caseNat m

(\ m' → m')

Zero

The case function can be expressed in terms of the fold for that datatype, and hence the Church

encoding.
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Case function – contd.

Haskell:

caseNat :: Nat → (Nat → r) → r → r

caseNat (Suc n) s z = s n

caseNat Zero s z = z

foldNat :: Nat → (s → s) → s → s

foldNat (Suc n) s z = s (foldNat n s z)

foldNat Zero s z = z
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Case via fold

We call foldNat choosing s ≡ (r, Nat) – that is pairing the return type and natural number:

caseNat n s z ≡
fst (foldNat n (\ (_,r) → (s r, Suc r))

(z, zero))

The second component of the pair just constructs the natural number again. This is how we can

access the predecessor!
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Nested patterns

Haskell allows nested patterns, too:

fib Zero = Zero

fib (Suc Zero) = Suc Zero

fib (Suc (Suc n)) = add (fib n) (fib (Suc n))

These can easily be desugared to nested applications of case using only flat patterns (and hence

to applications of caseNat):

fib n = case n of

Zero → Zero

Suc n' → case n' of

...
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Recap

We have seen how most Haskell constructs can be desugared to the lambda calculus:

• constructors of datatypes using the Church encoding,

• non-recursive let using lambda abstractions,

• general recursion using a fixed-point combinator,

• pattern matching using possibly nested applications of case functions.
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Recap – contd.

Many other Haskell constructs can be expressed in terms of the ones we have already seen – for

instance:

• where-clauses can be transformed into let

• if-then-else can be expressed as a function

• list comprehensions can be transformed into applications of map, concat and if-then-else

• monadic do notation can be transformed into applications of a limited number of functions
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