
Advanced Functional Programming

03 - Applicative, Traversable, and Foldable

Wouter Swierstra & Trevor L. McDonell

Utrecht University

1

Beyond the monad

So far, we have seen how monads define a common abstraction over many programming

patterns.

This kind of abstraction occurs more often in libraries.

In this lecture we will cover:

• applicative functors

• foldable

• traversable

• arrows

We’ll motivate the need for applicative functors starting with examples.

2

Sequencing IO operations

sequenceIO :: [IO a] -> IO [a]

sequenceIO [] = return []

sequenceIO (c : cs) = do x <- c

xs <- sequenceIO cs

return (x : xs)

There is nothing ‘wrong’ with this code – but using do notation may seem like overkill. The variable

x isn’t used in the rest of the computation!

We would like to ‘apply’ one monadic computation to another.

3

Using liftM2

The liftM2 function is defined as follows:

liftM2 :: (a -> b -> c) -> m a -> m b -> m c

liftM2 f ma mb = do a <- ma

b <- mb

return (f a b)

Using liftM2 we can write:

sequenceIO :: [IO a] -> IO [a]

sequenceIO [] = return []

sequenceIO (c:cs) = liftM2 (:) c (sequenceIO cs)

This even works for any monad, not just the IO monad.

4

More lifting functions

• liftM (or fmap) lifts functions a -> b

• liftM2 lifts functions a -> b -> c

• . . .

• liftM5 lifts functions a -> b -> c -> d -> e -> f

Do we need a liftMn for every n?

5

Time to derive liftMn!

6

Using ap

The ap function is defined as follows:

ap :: Monad m => m (a -> b) -> m a -> m b

ap mf mx = do f <- mf

x <- mx

return (f x)

Using ap we can write:

sequenceIO :: [IO a] -> IO [a]

sequenceIO [] = return []

sequenceIO (c:cs) =

return (:) ‘ap‘ c ‘ap‘ sequenceIO cs

7

Evaluating expressions

Another example:

data Expr v = Var v | Val Int | Add (Expr v) (Expr v)

type Env v = Map v Int

eval :: Expr v -> Env v -> Int

eval (Var v) env = lookup v env

eval (Val i) env = i

eval (Add l r) env = (eval l env) + (eval r env)

Once again, we are passing around an environment that is only really used in the Var branch.

8

An applicative alternative

const :: a -> (env -> a)

const x = \env -> x

s :: (env -> a -> b) -> (env -> a) -> (env -> b)

s ef es env = (ef env) (es env)

eval :: Expr v -> Env v -> Int

eval (Var v) = lookup v

eval (Val i) = const i

eval (Add l r) =

const (+) ‘s‘ (eval l) ‘s‘ (eval r)

The s combinator lets us ‘apply’ one computation expecting an environment to another.

9

Transposing matrices

transpose :: [[a]] -> [[a]]

transpose [] = repeat []

transpose (xs : xss) = zipWith (:) xs (transpose xss)

Can we play the same trick and find a combinator that will ‘apply’ a list of functions to a list of

arguments?

zapp :: [a -> b] -> [a] -> [b]

zapp (f : fs) (x : xs) = (f x) : (zapp fs xs)

transpose (xs : xss) =

repeat (:) ‘zapp‘ xs ‘zapp‘ transpose xss

10

What is the pattern?

What do these functions have in common?

ap :: IO (a -> b) -> IO a -> IO b

s :: (env -> a -> b) -> (env -> a) -> (env -> b)

zapp :: [a -> b] -> [a] -> [b]

11

Applicative (applicative functors)

class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

Note that Functor is a superclass of Applicative.

We can also define fmap in terms of the applicative operations:

(<$>) :: Functor f => (a -> b) -> f a -> f b

(<$>) f fx = pure f <*> fx

12

Applicative (applicative functors)

class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

Note that Functor is a superclass of Applicative.

We can also define fmap in terms of the applicative operations:

(<$>) :: Functor f => (a -> b) -> f a -> f b

(<$>) f fx = pure f <*> fx

12

Using Applicative operators

This type class leads to a certain code style:

sequenceIO :: [IO a] -> IO [a]

sequenceIO [] = return []

sequenceIO (c:cs) = (:) <$> c <*> sequenceIO cs

13

Relating Applicative functors and Monads

• Every monad can be given an applicative functor interface.

instance Monad m => Applicative m where

pure :: a -> m a

pure = return

mf <*> mx = do f <- mf; x <- mx; return (f x)

• But this may not always be the ‘right’ choice. For example, we have seen the ‘zapp’

applicative instance for lists; using the instance arising from the list monad gives very

different behaviour!

• But not every applicative functor is a monad…

14

Monads vs. applicative functors (1)

(<*>) :: Applicative f => f (a -> b) -> f a -> f b

flip (>>=) :: Monad m => (a -> m b) -> m a -> m b

• The arguments to <*> are (typically) first-order structures (that may contain higher-order

data).

• Monadic bind is inherently higher order.

• With monads, subsequent actions can depend on the results of effects: depending on the

character the user enters, respond differently.

15

Monads vs applicative functors (2)

• There are more Applicative functors than there are monads; but monads are more

powerful!

• If you have an Applicative functor, that’s good; having a monad is better.

• If you need a monad, that’s good; only needing an Applicative functor is better.

• With applicative functors, the structure is statically determined (and can be analyzed or

optimized). Consider the following example:

miffy :: Monad m => m Bool -> m a -> m a -> m a

16

Imprecise but catchy slogans

Monads are programmable semi-colons!

Applicatives are programmable function application!

17

Applicative functor laws

• identity

pure id <*> u = u

• composition

pure (.) <*> u <*> v <*> w = u <*> (v <*> w)

• homomorphism

pure f <*> pure x = pure (f x)

• interchange

u <*> pure x = pure (\f -> f x) <*> u

18

Spot the pattern

sequenceIO :: [IO a] -> IO [a]

sequenceIO [] = pure []

sequenceIO (c : cs) =

(:) <$> c <*> sequenceIO cs

cartesian_product :: [[a]] -> [[a]]

cartesian_product [] = pure []

cartesian_product (xs : xss) =

(:) <$> xs <*> cartesian_product xss

Both these functions take a list of applicative actions as argument.

They traverse this list, performing the actions one by one, collecting the results in a list.

19

Traversing lists

We can define a new function to capture this pattern:

sequence :: Applicative f => [f a] -> f [a]

sequence [] = pure []

sequence (x:xs) = pure (:) <*> x <*> sequence xs

Clearly we can traverse lists in this fashion – but what other data types support such an operation?

20

Traversable

The Traversable class captures those types that can be traversed in this fashion:

class Traversable t where

traverse :: Applicative f

=> (a -> f b) -> t a -> f (t b)

sequenceA :: Applicative f

=> t (f a) -> f (t a)

It requires a slightly more general traverse than the one we have seen so far.

Question:

Define traverse and sequenceA in terms of each other

21

Traversable

The Traversable class captures those types that can be traversed in this fashion:

class Traversable t where

traverse :: Applicative f

=> (a -> f b) -> t a -> f (t b)

sequenceA :: Applicative f

=> t (f a) -> f (t a)

It requires a slightly more general traverse than the one we have seen so far.

Question:

Define traverse and sequenceA in terms of each other

21

Traversable with defaults

class Traversable t where

traverse :: Applicative f

=> (a -> f b) -> t a -> f (t b)

traverse f = sequenceA . fmap f

sequenceA :: Applicative f

=> t (f a) -> f (t a)

sequenceA = traverse id

22

Traversable: example

data Expr v = Var v | Val Int | Add (Expr v) (Expr v)

instance Traversable Expr where

traverse :: Applicative f => (a -> f b) => Expr a -> f (Expr b)

traverse f (Var v) = Var <$> f v

traverse f (Val x) = pure (Val x)

traverse f (Add l r) =

Add <$> traverse f l <*> traverse f r

In general, traverse is just like fmap – only in applicative style.

23

Introducing Foldable

In the Haskell libraries, Traversable is defined slightly differently.

class (Functor t, Foldable t)

=> Traversable t where

What is the Foldable class?

24

Folding a list

The foldr function on lists captures a common pattern – think of it as a functional for-loop.

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f y [] = y

foldr f y (x:xs) = f x (foldr f y xs)

We can use it to define all kinds of simple list traversals:

sum = foldr (+) 0

maximum = foldr max minBound xs

(++) = \xs ys -> foldr (:) ys xs

concat = foldr (++) []

map = \f -> foldr (\x xs -> f x : xs) []

25

Folding: beyond lists

There are many other data types that support some form of fold operator.

data Tree a = Empty

| Leaf a

| Node (Tree a) (Tree a)

foldTree :: (a -> b -> b) -> b -> Tree a -> b

foldTree f y Empty = y

foldTree f y (Leaf x) = f x y

foldTree f y (Node l r) =

foldTree f (foldTree f y r) l

Note that generic programming gives a slightly more precise account.

26

Foldable

class Foldable f where

foldr :: (a -> b -> b) -> b -> f a -> b

foldMap :: Monoid m => (a -> m) -> f a -> m

Sometimes it can be easier to define the foldMap function – but what is a Monoid?

27

Intermezzo: monoids

class Monoid a where

mempty :: a

mappend :: a -> a -> a

Here mempty should be the unit of the associative operator mappend.

28

Monoids everywhere

• Bool using && and True

• Bool using or and False

• Int using + and 0

• Int using * and 1

• Int using max and minBound

• List a using ++ and []

• Imperative programs using ; and skip

• a -> a using . and id

• …

Monoids pop up everywhere!

29

Defining foldMap

Instead of defining fold, sometimes it can be easier to define foldMap:

foldMap :: Monoid m => (a -> m) -> Tree a -> m

foldMap f Empty = mempty

foldMap f (Leaf x) = f x

foldMap f (Node l r) =

foldMap f l `mappend` foldMap f r

You need to apply f to all the a values in the tree and combine subtrees using mappend.

30

Why?

What is the point of all this abstraction?

We all agree (I hope!) that foldr is useful for lists.

sum = foldr (+) 0

maximum = foldr max minBound xs

(++) ys = foldr (:) ys xs

concat = foldr (++) []

map f = foldr (\x xs -> f x : xs) []

… but we can now give definitions that work for any foldable structure.

31

Why?

What is the point of all this abstraction?

We all agree (I hope!) that foldr is useful for lists.

sum = foldr (+) 0

maximum = foldr max minBound xs

(++) ys = foldr (:) ys xs

concat = foldr (++) []

map f = foldr (\x xs -> f x : xs) []

… but we can now give definitions that work for any foldable structure.

31

Why?

What is the point of all this abstraction?

We all agree (I hope!) that foldr is useful for lists.

sum :: Foldable f => f Int -> Int

sum = foldr (+) 0

maximum :: Foldable f => f Int -> Int

maximum = foldr max minBound

flatten :: Foldable f => f a -> [a]

flatten = foldMap (\x -> [x]) (++)

32

Generalizing any

As a slightly less trivial example, consider the any function:

any :: (a -> Bool) -> [a] -> Bool

any p [] = False

any p (x:xs) = p x || any p xs

How can we generalize this to work on any traversable type?

33

Mighty Booleans

Let’s start by finding the right monoidal structure.

Instead of defining an instance for Bool, introducing a new type can help clarify the monoidal

structure we are using.

newtype Might = Might { might :: Bool }

instance Monoid Might where

mempty = Might False

(Might x) `mappend` (Might y) = Might (x || y)

34

Generic any

any :: Foldable f => (a -> Bool) -> f a -> Bool

any p = might . foldMap (Might . p)

Many other functions can be generalized similarly.

35

The Foldable-Traversable Proposal

As of GHC 7.10, many Prelude functions have been generalized to work over any traversable

structure – and not just lists.

Suppose we have a data type for binary trees, with the obvious traversable/foldable instances:

data Tree a where

Leaf :: a -> Tree a

Node :: Tree a -> Tree a -> Tree a

We can use the prelude functions we are used to over this data structure too.

36

Example folds over trees

> let t = (Node (Leaf 1) (Node (Leaf 2) (Leaf 3))

> any isEven t

True

> length t

3

> elem 3 t

True

We no longer need to define specialized functions for trees.

37

Exercise

What is the foldable instance for Maybe?

What about the foldable instance for pairs?

38

Drawbacks

But there are also quite surprising examples:

minimum (1,1000)

length (lookup 4 [(2,“Hello”), (4,“World”), (5,“!”)])

null (lookup 3 [])

Sometimes code may type check, where you would have liked to see a type error.

39

Drawbacks

But there are also quite surprising examples:

minimum (1,1000)

length (lookup 4 [(2,“Hello”), (4,“World”), (5,“!”)])

null (lookup 3 [])

Sometimes code may type check, where you would have liked to see a type error.

39

Introducing arrows

If applicative functors generalize the notion of application, can we find a similar abstraction over

functions and function composition?

Yes! There is more than a decade of work investigating functional programming using Arrows.

40

Arrows

class Arrow a where

arr :: (b -> c) -> a b c

(>>>) :: a b c -> a c d -> a b d

first :: a b c -> a (b,d) (c,d)

• Just like applicative functors and monads, arrows have several associated laws.

• Many programs using arrows require additional operations – similar to classes such as

MonadPlus.

• GHC supports special syntax for programming with Arrows, similar to the do notation for

monads.

41

Historical context

• Monads were originally studied in the context of program language semantics.

• Only later, was their importance for structuring programs discovered (and subsequently,

modelling IO)

• Arrows (Hughes 2000) were proposed as an alternative to monads, but they have not been

widely adopted.

• More recently, applicative functors have gained a lot of traction in the Haskell community

(McBride and Paterson 2008), generalising the interface by Duponcheel and Swierstra (1996).

• Applicative functors, together with the associated Traversable and Foldable classes, are now

part of the Haskell standard.

42

Why care?

Functional programmers are adicted to abstraction: as soon as they spot a pattern, they typically

want to abstract over it.

The type classes we have seen today, such as monads, applicative functors, foldable, and

traversable, all capture some common pattern.

Using these patterns can save you some boilerplate code.

But understanding these patterns can help guide your design.

Is my type a monad? Or is it just applicative? Can I find a Traversable instance? Why not?

43

Further reading

• Applicative programming with effects, McBride and Paterson

• Monoids: Theme and Variations, Brent Yorgey

• Programming with arrows, John Hughes

• Idioms are oblivious, arrows are meticulous, monads are promiscuous, Lindley, Wadler and

Yallop

• and much much more!

44

Appendix: Time for type trickery!

45

Functor and Foldable from Traversable

class (Functor t, Foldable t)

=> Traversable t where

traverse :: Applicative f

=> (a -> f b) -> t a -> f (t b)

sequenceA :: Applicative f

=> t (f a) -> f (t a)

We can write fmap and foldMap using traverse or sequenceA

Let’s do it!

46

Functor and Foldable from Traversable

class (Functor t, Foldable t)

=> Traversable t where

traverse :: Applicative f

=> (a -> f b) -> t a -> f (t b)

sequenceA :: Applicative f

=> t (f a) -> f (t a)

We can write fmap and foldMap using traverse or sequenceA

Let’s do it!

46

fmap via traverse

newtype Id a = Id { getId :: a }

myFmap :: Traversable f => (a -> b) -> f a -> f b

myFmap f = getId . traverse (Id . f)

47

foldMap via traverse

traverse :: Applicative f

=> (a -> f b) -> t a -> f (t b)

foldMap :: Monoid m

=> (a -> m) -> t a -> m

You need to find an Applicative which behaves like a monoid

myFoldMap f = getMonoidApplicative

. traverse (MonoidApplicative . f)

48

foldMap via traverse

traverse :: Applicative f

=> (a -> f b) -> t a -> f (t b)

foldMap :: Monoid m

=> (a -> m) -> t a -> m

You need to find an Applicative which behaves like a monoid

myFoldMap f = getMonoidApplicative

. traverse (MonoidApplicative . f)

48

foldMap via traverse using Const

The functor you need is called Const

data Const k a = Const { getConst :: k }

instance Functor (Const k) where

fmap _ (Const x) = Const x

What about the Applicative instance?

49

foldMap via traverse using Const

instance Monoid k => Applicative (Const k) where

pure = Const mempty

Const x <*> Const y

= Const (x `mappend` y)

50

	Time to derive liftMn!
	Appendix: Time for type trickery!

