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In this lecture

• A number of useful programming patterns.

• We will see a similarity between seemingly different concepts.
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The Maybe type

data Maybe a = Nothing

| Just a

The Maybe datatype is often used to encode failure or an exceptional value:

find :: (a -> Bool) -> [a] -> Maybe a

lookup :: Eq a => a -> [(a,b)] -> Maybe b
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Encoding exceptions using Maybe

Assume that we have a (Zipper-like) data structure with the following operations:

up, down, right :: Loc -> Maybe Loc

update :: (Int -> Int) -> Loc -> Loc

Given a location l1, we want to move up, right, down, and update the resulting position with using

update (+1) …

Each of the steps can fail.
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Encoding exceptions using Maybe (contd.)

The straightforward implementation calls each function, checking the result before continuing.

case up l1 of

Nothing -> Nothing

Just l2 -> case right l2 of

Nothing -> Nothing

Just l3 -> case down l3 of

Nothing -> Nothing

Just l4 -> Just (update (+1) l4)

There’s a lot of code duplication here!

Let’s try to refactor out the common pattern.
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Refactoring

case up l1 of

Nothing -> Nothing

Just l2 -> case right l2 of

Nothing -> Nothing

Just l3 -> case down l3 of

Nothing -> Nothing

Just l4 -> Just (update (+1) l4)

We would like to:

• call a function that may fail;

• return Nothing when the call fails;

• continue somehow when the call succeeds.

• and lift a final result update (+1) l4 into a Maybe.
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Capturing this pattern

We need to define an operator that takes two arguments:

• call a function that may fail:

Maybe a

• continue somehow when the call succeeds:

a -> Maybe b.

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

f >>= g = case f of

Nothing -> Nothing

Just x -> g x
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Returning results

Once we have computed the desired result, update (+1) l4, it is easy to turn it into a value of type

Maybe Loc.

Although it’s not very useful just yet, we can define the following function:

return :: a -> Maybe a

return x = Just x
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Refactoring our code

case up l1 of

Nothing -> Nothing

Just l2 -> case right l2 of

Nothing -> Nothing

Just l3 -> case down l3 of

Nothing -> Nothing

Just l4 -> Just (update (+1) l4)

9



Refactoring our code

up l1 >>= \l2 ->

case right l2 of

Nothing -> Nothing

Just l3 -> case down l3 of

Nothing -> Nothing

Just l4 -> Just (update (+1) l4)
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Refactoring our code

up l1 >>= \l2 ->

right l2 >>= \l3 ->

case down l3 of

Nothing -> Nothing

Just l4 -> Just (update (+1) l4)
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Refactoring our code

up l1 >>= \l2 ->

right l2 >>= \l3 ->

down l3 >>= \l4 ->

Just (update (+1) l4)
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Refactoring our code

up l1 >>= \l2 ->

right l2 >>= \l3 ->

down l3 >>= \l4 ->

return (update (+1) l4)

We can simplify this even further to:

up l1 >>= right >>= down >>= return . update (+1)
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Imperative look-and-feel

Compare the following Haskell code:

up l1 >>= \l2 ->

right l2 >>= \l3 ->

down l3 >>= \l4 ->

return (update (+1) l4)

with this ‘imperative’ code:

l2 := up l1;

l3 := right l2;

l4 := down l3;

return (update (+1) l4);
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Imperative look-and-feel

In the imperative code, failure is an implicit side-effect;

In the Haskell version, we track the possibility of failure using Maybe and ‘hide’ the implementation

with the sequencing operator.
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A variation: Either

Compare the datatypes

data Either a b = Left a | Right b

data Maybe a = Nothing | Just a

The datatype Maybe can encode exceptional function results (i.e., failure), but no information can

be associated with Nothing. We cannot dinstinguish different kinds of errors.

Using Either, we can use Left to encode errors, and Right to encode successful results.

16



Example

type Error = String

fac :: Int -> Either Error Int

fac 0 = Right 1

fac n | n > 0 = case fac (n - 1) of >

Left e -> Left e

Right r -> Right (n * r)

| otherwise = Left “fac: negative argument”

Structure of sequencing looks similar to the sequencing for Maybe.
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Sequencing and returning for Either

We can define variations of the operatons for Maybe:

(>>=) :: Either Error a ->

(a -> Either Error b) -> Either Error b

f >>= g = case f of

Left e -> Left e

Right x -> g x

return :: a -> Either Error a

return x = Right x
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Refactoring our fac function

The function can now be written as:

fac :: Int -> Either Error Int

fac 0 = return 1

fac n

| n > 0 = fac (n - 1) >>= \r -> return (n * r)

| otherwise = Left “fac: negative argument”
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Simulating exceptions

We can abstract completely from the definition of the underlying Either type if we define

functions to throw and catch errors.

throwError :: Error -> Either Error a

throwError e = Left e

catchError :: Either Error a ->

(Error -> a) ->

a

catchError f handler = case f of

Left e -> handler e

Right x -> x
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State
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Maintaining state explicitly

• We pass state to a function as an argument.

• The function modifies the state and produces it as a result.

• If the function does anything except modifying the state, we must return a tuple (or a

special-purpose datatype with multiple fields).

This motivates the following type definition:

type State s a = s -> (a, s)
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Using state

There are many situations where maintaining state is useful:

• using a random number generator – like we saw for QuickCheck

type Random a = State StdGen a

• using a counter to generate unique labels

type Counter a = State Int a
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Using state – continued

• maintaining the complete current configuration of an application (an interpreter, a game, …)

using a user-defined datatype

data ProgramState = ...

type Program a = State ProgramState a

• caching information locally, which can later be flushed to an external data source, such as a

database or file.
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Encoding state passing

data Tree a = Leaf a

| Node (Tree a) (Tree a)

relabel :: Tree a -> State Int (Tree Int)

relabel (Leaf x) = \s -> (Leaf s, s + 1)

relabel (Node l r) = \s ->

let (l',s') = relabel l s

in let (r',s'') = relabel r s'

in (Node l' r', s'')

Again, we’ll define two functions:

• a way to sequence the state from one call to the next;

• a way to produce a final results.
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Sequence and return for state

(>>=) :: State s a -> (a -> State s b) -> State s b

f >>= g = \s -> let (x,s') = f s in

g x s'

return :: a -> State s a

return x = \s -> (x,s)
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Refactoring our code

relabel :: Tree a -> State Int (Tree Int)

relabel (Leaf x) = \s -> (Leaf s, s + 1)

relabel (Node l r) = \s ->

let (l',s') = relabel l s

in let (r',s'') = relabel r s'

in (Node l' r', s'')

(>>=) :: State s a -> (a -> State s b) -> State s b

f >>= g = \s -> let (x,s') = f s in

g x s'

Let’s try to refactor the code, using our sequencing operator.
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Refactoring our code

relabel :: Tree a -> State Int (Tree Int)

relabel (Leaf x) = \s -> (Leaf s, s + 1)

relabel (Node l r) =

relabel l >>= \l' -> \s' ->

(r',s'') = relabel r s' in

(Node l' r', s'')

(>>=) :: State s a -> (a -> State s b) -> State s b

f >>= g = \s -> let (x,s') = f s in

g x s'

Instead of threading the state explicitly, we can use >>=!
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Refactoring our code

relabel :: Tree a -> State Int (Tree Int)

relabel (Leaf x) = \s -> (Leaf s, s + 1)

relabel (Node l r) =

relabel l >>= \l' ->

relabel r >>= \r' -> \s'' ->

(Node l' r', s'')

return :: a -> State s a

return x = \s -> (x,s)

Now we observe that the final step is not modifying the state.
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Refactoring our code

relabel :: Tree a -> State Int (Tree Int)

relabel (Leaf x) = \s -> (Leaf s, s + 1)

relabel (Node l r) =

relabel l >>= \l' ->

relabel r >>= \r' ->

return (Node l' r')

return :: a -> State s a

return x = \s -> (x,s)
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Comparison with imperative version

In Haskell:

relabel l >>= \l' ->

relabel r >>= \r' ->

return (Node l' r')

Imperative pseudocode:

l' := relabel l;

r' := relabel r;

return (Node l' r');
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Comparison with imperative version

• In most imperative languages, the occurrence of memory updates is an implicit side effect.

• Haskell is more explicit because we use the State type and the appropriate sequencing

operation.
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“Primitive” operations for state handling

We can completely hide the implementation of State if we provide the following two operations as

an interface:

get :: State s s

get = \s -> (s, s)

put :: s -> State s ()

put s = \_ -> ((), s)

Using this we can define the following helper function for our example:

fresh :: State Int ()

fresh = get >>= \s -> put (s + 1)
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Haskell libraries

Actually, Haskell’s Control.Monad.State module uses a slightly different implementation:

newtype State s a = State {runState :: s -> (a, s)}

This definition is equivalent to the definition we saw previously.
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Lists
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Encoding multiple results and nondeterminism

Get the length of all words in a list of multi-line texts:

map length

(concat

(map words

(concat (map lines txts))))

• Easier to understand with a list comprehension:

[ length w | t <- txts, l <- lines t, w <- words l ]
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Sequencing again

We can also define sequencing and embedding, i.e., (>>=) and return for lists:

(>>=) :: [a] -> (a -> [b]) -> [b]

xs >>= f = concat (map f xs)

return :: a -> [a]

return x = [x]
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Using bind and return for lists

Once again, we can refactor code to use bind, turning:

map length (concat (map words (concat (map lines txts))))

into:

txts >>= \t ->

lines t >>= \l ->

words l >>= \w ->

return (length w)
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Comparison with imperative solution

• Again, we have a similarity to imperative code.

• In the imperative language, we have implicit nondeterminism (one or all of the options are

chosen).

• In Haskell, we are explicit by using the list datatype and explicit sequencing using (>>=).
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Intermediate Summary

At least three types with (>>=) and return:

• for Maybe, (>>=) sequences operations that may trigger exceptions and shortcuts evaluation

once an exception is encountered; return embeds a function that never throws an exception;

• for State, (>>=) sequences operations that may modify some state and threads the state

through the operations; return embeds a function that never modifies the state;

• for [], (>>=) sequences operations that may have multiple results and executes subsequent

operations for each of the previous results; return embeds a function that only ever has one

result.

There is a common interface here!
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The Monad class
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Monad class

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

• The name “monad” is borrowed from category theory.

• A monad is an algebraic structure similar to a monoid.

• Monads were first studied in the semantics of programming languages by Moggi; later they

were applied to functional programming languages by Wadler.
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Instances

instance Monad Maybe where

...

instance (Error e) => Monad (Either e) where

...

instance Monad [] where

...

newtype State s a = State {runState :: s -> (a, s)}

instance Monad (State s) where

...
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Excursion: type constructors

• The class Monad ranges not over ordinary types, but over parameterized types.

• There are types of types, called kinds.

• Types of kind * are inhabited by values. Examples: Bool, Int, Char.

• Types of kind ‘* -> have one parameter of kind. TheMonadclass ranges over such types.

Examples:[],Maybe‘.

• Applying a type constructor of kind ‘* -> to a type of kindyields a type of kind*.

Examples:[Int],Maybe Char‘.

• The kind of State is ‘* -> * -> . For any types,State sis of kind -> *and can thus be an

instance of classMonad‘.
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Excursion: functors

Monads are not the only ‘higher-order’ abstraction: structures that allow mapping have their own

class.

class Functor f where

fmap :: (a -> b) -> f a -> f b

• All containers, in particular all trees can be made an instance of functor.

• Every monad is a functor morally (liftM), but not necessarily in Haskell.

• Not all type constructors are functors; not all functors are monads…
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Monad laws

• Every instance of the monad class should have the following properties:

• return is the unit of (>>=)

return a >>= f == f a

m >>= return == m

• associativity of (>>=)

(m >>= f) >>= g == m >>= (\x -> f x >>= g)
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Monad laws for Maybe

To prove the monad laws for Maybe we need to show for any f : a -> Maybe b, and for any m :

Maybe a:

Just x >>= f == f x

and

m >>= return == m

Both are straightforward exercises.

Similarly, associativity of >>= requires a longer, but no more complex proof.
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Bind or join

We have presented monads by defining the following interface:

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

We could also have chosen the following, equivalent interface:

join :: m (m a) -> m a

return :: a -> m a

It is a good exercise to try to define >>= in terms of join and visa versa (m also needs to be a

functor).
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Additional monad operations

Class Monad contains two additional methods, but with default methods:

class Monad m where

...

(>>) :: m a -> m b -> m b

m >> n = m >>= \_ -> n

While the presence of (>>) can be justified for efficiency reasons.

Nowadays, many monads also have a MonadFail instance, specifying what to do when desugaring

the do-notation into pattern matching fails.
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do notation

Haskell offers special syntax for programming with monads. Rather than write:

mf >>= \f ->

mg >>= \g ->

...

You can also write:

do

f <- mf

g <- mg

...

You can also use let expressions within do blocks to name (non monadic) computations.
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Monadic application

ap :: (Monad m) => m (a -> b) -> m a -> m b

ap mf mx = do

f <- mf

x <- mx

return (f x)

Or without do notation:

ap mf mx = mf >>= \f’ ->

mx >>= \x’ ->

return (f x)
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More on do notation

• Use it, it is usually more concise.

• Never forget that it is just syntactic sugar. Use (>>=) and (>>) directly when it is more

convenient.

• Remember that return is just a normal function:

• Not every do-block ends with a return.

• return can be used in the middle of a do-block, and it doesn’t “jump” anywhere.

• Not every monad computation has to be in a do-block. In particular do e is the same as e.

• On the other hand, you may have to “repeat” the do in some places, for instance in the

branches of an if.
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The IOmonad

Another type with actions that require sequencing.

The IO monad is special in several ways:

• IO is a primitive type, and (>>=) and return for IO are primitive functions,

• there is no (politically correct) function runIO :: IO a -> a, whereas for most other monads

there is a corresponding function,

• values of IO a denote side-effecting programs that can be executed by the run-time system.

Note that the specialty of IO has really not much to do with being a monad.
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IO, internally

> :i IO

newtype IO a

= GHC.Types.IO

(GHC.Prim.State# GHC.Prim.RealWorld

-> (# GHC.Prim.State# GHC.Prim.RealWorld

, a #))

-- Defined in ‘GHC.Types’

instance Monad IO -- Defined in ‘GHC.Base’

...

Internally, GHC models IO as a state monad having the “real world” as state!
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The role of IO in Haskell

More and more features have been integrated into IO, for instance:

• classic file and terminal IO

putStr, hPutStr

• references

newIORef, readIORef, writeIORef

• access to the system

getArgs, getEnvironment, getClockTime

• exceptions

throwIO, catch

• concurrency

forkIO
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IO examples

Stdout output

> putStr “Hi”

Hi

> do putChar ’H’ ; putChar ’i’ ; putChar ’!’

Hi!
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IO examples

File IO

> do h <- openFile “TMP” WriteMode; hPutStrLn h “Hi”

> :q

Leaving GHCi

$ cat TMP

Hi
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IO examples

Side-effect: variables

do v <- newIORef “text”

modifyIoRef v (\t -> t++ “ and more text”)

w <- readIORef v

print w

Results in
text and more text
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The role of IO in Haskell (contd.)

• Because of its special status, the IOmonad provides a safe and convenient way to express all

these constructs in Haskell. Haskell’s purity (referential transparency) is not compromised,

and equational reasoning can be used to reason about IO programs.

• A program that involves IO in its type can do everything. The absence of IO tells us a lot, but

its presence does not allow us to judge what kind of IO is performed.

• It would be nice to have more fine-grained control on the effects a program performs.

• For some, but not all effects in IO, we can use or build specialized monads.
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Lifting functions to monads

liftM :: (Monad m) => (a -> b) -> m a -> m b

liftM f m = do x <- m; return (f x)

liftM2 :: (Monad m) => (a -> b -> c) -> m a -> m b -> m c

liftM2 f m1 m2 = do x1 <- m1;

x2 <- m2;

return (f x1 x2)

Question What is liftM (+1) [1..5]?

Answer Same as map (+1) [1..5]. The function liftM generalizes map to arbitrary monads.
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Monadic map

mapM :: (Monad m) => (a -> m b) -> [a] -> m [b]

mapM f [] = return []

mapM f (x:xs) = liftM2 (:) (f x) (mapM f xs)

mapM_ :: (Monad m) => (a -> m b) -> [a] -> m () >

mapM_ f [] = return ()

mapM_ f (x:xs) = f x >> mapM_ f xs
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Sequencing monadic actions

sequence :: (Monad m) => [m a] -> m [a]

sequence = foldr (liftM2(:)) (return [])

sequence_:: (Monad m) => [m a] -> m ()

sequence_ = foldr (>>) (return ())
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Monadic fold

foldM :: (Monad m) => (a -> b -> m a) -> a -> [b] -> m a

foldM op e [] = return e

foldM op e (x:xs) = do

r <- op e x

foldM f r xs
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More monadic operations

Browse Control.Monad:

filterM :: (Monad m) => (a -> m Bool) -> [a] -> m [a]

replicateM :: (Monad m) => Int -> m a -> m [a]

replicateM_ :: (Monad m) => Int -> m a -> m ()

join :: (Monad m) => m (m a) -> m a

when :: (Monad m) => Bool -> m () -> m ()

unless :: (Monad m) => Bool -> m () -> m ()

forever :: (Monad m) => m a -> m ()

…and more!
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Next lecture

• Similar programming patterns have emerged in recent years: have a look at “Applicative

Programming with Effects” by Conor McBride and Ross Paterson.

• Try reading “Monads for functional programming” – the Mother of all Monad tutorials.
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