
Introduction
Advanced functional programming

Wouter Swierstra

1

Welcome to the Utrecht AFP Summer School

2

This morning

• Introduce myself and the other lecturers

• Overview of the course

• Basic Haskell review

• Answer any questions regarding organizational issues

3

UU Lecturers

• Wouter Swierstra

• Gabriele Keller

• Ivo Gabe de Wolff

• Jacco Krijnen

• Marco Vassena

• David van Balen

• Lawrence Chonavel

• Guest lecturer: Farhad Mehta

4

Lectures

• Lectures held in room BBG - but different rooms throughout the week.

• 2 × 45 minute slots with a 15 minute break

Short breaks between lectures; longer break for lunch.

Coffee & drinks will be provided after the morning/afternoon lecture.

5

Lab organization

Labs will be held in the same room as the lectures.

We have lab machines for you to use – but you may prefer to use your own computer.

We have a series of exercises for you to work on, grouped thematically.

We have TAs - Brian and Hassan - around to answer your questions!

6

Lab exercises

1. Tools and laziness

2. Monads, monad transformers and applicative functors

3. Fancy types - GADTs, type families, nested types

4. A simple database - parsing, monads, I/O

5. Lambda calculus

Choose the exercises that fit your interests best.

7

Homepage

Course homepage:
https://www.afp.school

We will update the homepage regularly with slides and further information.

8

https://www.afp.school

Topics

• Haskell refresher & programming style
• Monads & I/O
• Lambda calculus
• Applicative, foldable & traversable
• Generalized Algebraic Data Types
• Type families
• …

9

Lunch and dinner

• Catered lunches will be provided - but you may want to grab a sandwich and head outside.

• Dinner each night will be at different restaurant across Utrecht.

Both lunches and dinners are included in your registration fee.

Two drinks are included with dinner – feel free to order more drinks at your own expense.

10

Software installation

What do you need during the labs?

• A recent version of GHC, such as the one shipped with the Haskell Platform.

• We recommend using the Haskell Platform (libraries, Cabal, Haddock, Alex, Happy).

11

Some suggested further reading

• Parallel and concurrent programming in Haskell by Simon Marlow

• Fun of Programming edited by Jeremy Gibbons and Oege de Moor

• Purely Functional Data Structures by Chris Okasaki

• Types and Programming Languages by Benjamin Pierce

• AFP summer school series of lecture notes on various topics

All the slides will be put online after each lecture – feel free to revisit them later.

12

Questions?

13

Haskell review

• A pure functional language

• Data types and pattern matching

• Higher order functions

• Polymorphism

• Type classes

14

Function definitions

Functions are typically defined by pattern matching:

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

Here the map function takes a function and input list as argument;

It produces a new list, where the function has been applied to every element of the input list.

15

Data types and pattern matching

Besides defining functions on lists we can declare our own data types:

data Tree a = Leaf a | Node (Tree a) (Tree a)

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree f (Leaf x) = Leaf (f x)

mapTree f (Node l r) = Node (mapTree f l)

(mapTree f r)

We can define functions on trees by pattern matching.

16

Higher-order functions

Functions such as map and mapTree are higher-order functions – functions that take functions as
arguments.

In Haskell, functions are first class citizens – they can be bound to variables or passed to other
functions.

This pattern pops up again and again; we’ll see lots of higher-order functions in the lectures on
monads, testing and elsewhere.

17

Polymorphism

Functions such as map and mapTree are polymorphic:

incrementList = map (\x -> x + 1)

checkList = map (\x -> x > 3)

The two calls to map pass functions of different types as arguments.

Question: What are the types of these two functions?

18

Classes

Polymorphic functions are oblivious to the values on which they operate.

map :: (a -> b) -> [a] -> [b]

The first argument could be any function!

Oftentimes, we want know something about the data which we manipulate.

sort :: [a] -> [a]

To define a sorting function, we need to compare the elements of type a.

19

Classes

Polymorphic functions are oblivious to the values on which they operate.

map :: (a -> b) -> [a] -> [b]

The first argument could be any function!

Oftentimes, we want know something about the data which we manipulate.

sort :: [a] -> [a]

To define a sorting function, we need to compare the elements of type a.

19

Haskell classes

Haskell classes define an interface:

class Eq a where

(==) :: a -> a -> Bool

We can define instances by providing operations on a specific type:

instance Eq Bool where

True == True = True

False == False = True

_ == _ = False

20

Haskell classes

We can define more complicated instances, such as the Eq instance for lists, assuming that we have
already defined an Eq instance for its elements:

instance Eq a => Eq [a] where

[] == [] = True

(x:xs) == (y:ys) = x == y && xs == ys

_ == _ = False

We can now compare lists of booleans, lists of lists of booleans, etc.

Question: What should the Eq instance for pairs be?

21

Using classes

When we declare a type signature using a class constraint such as Eq a, we can use the equality
function to compare elements of type a.

For example, the elem function checks if a specific element occurs in a list or not:

elem :: Eq a => a -> [a] -> Bool

elem e [] = False

elem e (x:xs) = e == x || elem e xs

We can use elem on lists of any types, provided there is a corresponding Eq instance.

This is sometimes referred to as ad-hoc polymorphism.

22

Packages and modules

23

Code in the large

Once you start to organize larger units of code, you typically want to split this over several different
files.

In Haskell, each file contains a separate module.

Let’s start with a quick recap and reviewing the strengths and weaknesses of Haskell’s module
system.

24

Goals of the Haskell module system

• Units of separate compilation (not supported by all compilers).

• Namespace management

There is (or rather was until recently) language concept of interfaces or signatures in Haskell, except
for the class system.

25

Syntax

module M(D(),f,g) where

import Data.List(unfoldr)

import qualified Data.Map as M

import Control.Monad hiding (mapM)

• Hierarchical modules

• Export list

• Import list, hiding list

• Qualified, unqualified

• Renaming of modules

26

Module Main

• If the module header is omitted, the module is automatically named Main.

• Each full Haskell program has to have a module Main that defines a function

main :: IO()

27

Hierarchical modules

Module names consist of at least one identifier starting with an uppercase letter, where each
identifier is separated from the rest by a period.

• This former extension to Haskell 98, has been formalized in an addendum to the Haskell 98
Report and is now widely used.

• Implementations expect a module X.Y.Z to be named X/Y/Z.hs or X/Y/Z.lhs

• There are no relative module names – every module is always referred to by a unique name.

28

Hierarchical modules

Most of Haskell 98 standard libraries have been extended and placed in the module hierarchy –
moving List to Data.List.

Good practice: Use the hierarchical modules where possible. In most cases, the top-level module
should only refer to other modules in other directories.

29

Importing modules

• The import declarations can only appear in the module header, i.e., after the module

declaration but before any other declarations.

• A module can be imported multiple times in different ways.

• If a module is imported qualified, only the qualified names are brought into scope. Otherwise,
the qualified and unqualified names are brought into scope.

• A module can be renamed using as. Then, the qualified names that are brought into scope are
using the new modid.

• Name clashes are reported lazily.

30

Prelude

• The module Prelude is imported implicitly as if

import Prelude

has been specified.

• An explicit import declaration for Prelude overrides that behaviour

qualified Prelude

causes all names from Prelude to be available only in their qualified form.

31

Module dependencies

• Modules are allowed to be mutually recursive.

• This is not supported well by GHC, and therefore somewhat discouraged.

Question: Why might it be difficult?

32

Best practices

33

Designing packages

• Use qualified names instead of pre- and suffixes to disambiguate.

• Use renaming of modules to shorten qualified names.

• Avoid hiding

• Recall that you can import the same module multiple times.

34

Haskell package management

• Packages are collections of modules that are distributed together.

• Packages are not part of the Haskell standard.

• Packages are versioned and can depend on other packages.

• Packages contain modules. Some of those modules may be hidden.

35

Never use TABs

• Haskell uses layout to delimit language constructs.

• Haskell interprets TABs to have 8 spaces.

• Editors often display them with a different width.

• TABs lead to layout-related errors that are difficult to debug.

• Even worse: mixing TABs with spaces to indent a line.

Question: What might go wrong?

36

Never use TABs

• Never use TABs.

• Configure your editor to expand TABs to spaces, and/or highlight TABs in source code.

37

Alignment

• Use alignment to highlight structure in the code!

• Do not use long lines.

• Do not indent by more than a few spaces.

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x : xs) = f x : map f xs

38

Identifier names

• Use informative names for functions.

• Use CamelCase for long names.

• Use short names for function arguments.

• Use similar naming schemes for arguments of similar types.

39

Spaces and parentheses

• Generally use exactly as many parentheses as are needed.

• Use extra parentheses in selected places to highlight grouping, particularly in expressions with
many less known infix operators.

• Function application should always be denoted with a space.

• In most cases, infix operators should be surrounded by spaces.

40

Blank lines

• Use blank lines to separate top-level functions.

• Also use blank lines for long sequences of let-bindings or long do-blocks, in order to group
logical units.

41

Avoid large functions

• Try to keep individual functions small.

• Introduce many functions for small tasks.

• Avoid local functions if they need not be local.

Question: Why?

42

Type signatures

• Always give type signatures for top-level functions.

• Give type signatures for more complicated local definitions, too.

• Use type synonyms.

checkTime :: Int -> Int -> Int -> Bool

checkTime :: Hours -> Minutes -> Seconds -> Bool

type Hours = Int

type Minutes = Int

type Seconds = Int

43

Type signatures

• Always give type signatures for top-level functions.

• Give type signatures for more complicated local definitions, too.

• Use type synonyms.

checkTime :: Int -> Int -> Int -> Bool

checkTime :: Hours -> Minutes -> Seconds -> Bool

type Hours = Int

type Minutes = Int

type Seconds = Int

43

Type signatures

Or even better, use new types or data types generously:

checkTime :: Hours -> Minutes -> Seconds -> Bool

newtype Hours = Hours Int

newtype Minutes = Minutes Int

newtype Seconds = SecondsInt

Question: what are the relative advantages and disadvantages of newtypes vs type synonyms?

44

Comments

• Comment top-level functions.

• Also comment tricky code.

• Write useful comments, avoid redundant comments!

• Use Haddock.

45

Booleans

Keep in mind that Booleans are first-class values.

Negative examples:

f x | isSpace x == True = ...

if x then True else False

46

Use (data)types!

• Whenever possible, define your own datatypes.

• Use Maybe or user-defined types to capture failure, rather than error or default values.

• Use Maybe or user-defined types to capture optional arguments, rather than passing undefined

or dummy values.

• Don’t use integers for enumeration types.

• By using meaningful names for constructors and types, or by defining type synonyms, you can
make code more self-documenting.

47

Use common library functions

• Don’t reinvent the wheel. If you can use a Prelude function or a function from one of the basic
libraries, then do not define it yourself.

• If a function is a simple instance of a higher-order function such as map or foldr, then use
those functions.

48

Pattern matching

• When defining functions via pattern matching, make sure you cover all cases.

• Try to use simple cases.

• Do not include unnecessary cases.

• Do not include unreachable cases.

49

Avoid partial functions

• Always try to define functions that are total on their domain, otherwise try to refine the domain
type.

• Avoid using functions that are partial.

50

Negative example

if isJust x then 1 + fromJust x else 0

Use pattern matching!

51

Use let instead of repeating complicated code

Write

let x = foo bar baz in x + x * x

rather than

foo bar baz + foo bar baz * foo bar baz

Questions

• Is there a semantic difference between the two pieces of code?

• Could/should the compiler optimize from the second to the first version internally?

52

Type-driven development

• Try to make your functions as generic as possible (why?).

• If you have to write a function of type Foo -> Bar, consider how you can destruct a Foo and
how you can construct a Bar.

• When you tackle an unknown problem, think about its type first.

• You can insert ‘holes’ into your program to help develop your program piece by piece:

myFunction : (Foo -> Foo) -> Bar -> Baz

myFunction f b =

let i = computeResult f _ in

i + _

This is particularly helpful if you choose your types carefully!

53

Lunch
For lunch today, we go to the Botanical Gardens.

There will be lunchbags available - feel free to have a walk around, enjoy the weather and get to
know your fellow students.

Next lecture: 14:00 here on Monads and I/O.

54

Questions?

55

