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Welcome to the Utrecht AFP Summer School
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This morning

• Introduce myself and the other lecturers

• Overview of the course

• Basic Haskell review

• Answer any questions regarding organizational issues

3



UU Lecturers

• Wouter Swierstra

• Gabriele Keller

• Ivo Gabe de Wolff

• Jacco Krijnen

• Marco Vassena

• David van Balen

• Lawrence Chonavel

• Guest lecturer: Farhad Mehta
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Lectures

• Lectures held in room BBG - but different rooms throughout the week.

• 2 × 45 minute slots with a 15 minute break

Short breaks between lectures; longer break for lunch.

Coffee & drinks will be provided after the morning/afternoon lecture.

5



Lab organization

Labs will be held in the same room as the lectures.

We have lab machines for you to use – but you may prefer to use your own computer.

We have a series of exercises for you to work on, grouped thematically.

We have TAs - Brian and Hassan - around to answer your questions!
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Lab exercises

1. Tools and laziness

2. Monads, monad transformers and applicative functors

3. Fancy types - GADTs, type families, nested types

4. A simple database - parsing, monads, I/O

5. Lambda calculus

Choose the exercises that fit your interests best.
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Homepage

Course homepage:
https://www.afp.school

We will update the homepage regularly with slides and further information.
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Topics

• Haskell refresher & programming style
• Monads & I/O
• Lambda calculus
• Applicative, foldable & traversable
• Generalized Algebraic Data Types
• Type families
• …
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Lunch and dinner

• Catered lunches will be provided - but you may want to grab a sandwich and head outside.

• Dinner each night will be at different restaurant across Utrecht.

Both lunches and dinners are included in your registration fee.

Two drinks are included with dinner – feel free to order more drinks at your own expense.

10



Software installation

What do you need during the labs?

• A recent version of GHC, such as the one shipped with the Haskell Platform.

• We recommend using the Haskell Platform (libraries, Cabal, Haddock, Alex, Happy).
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Some suggested further reading

• Parallel and concurrent programming in Haskell by Simon Marlow

• Fun of Programming edited by Jeremy Gibbons and Oege de Moor

• Purely Functional Data Structures by Chris Okasaki

• Types and Programming Languages by Benjamin Pierce

• AFP summer school series of lecture notes on various topics

All the slides will be put online after each lecture – feel free to revisit them later.

12



Questions?
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Haskell review

• A pure functional language

• Data types and pattern matching

• Higher order functions

• Polymorphism

• Type classes
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Function definitions

Functions are typically defined by pattern matching:

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

Here the map function takes a function and input list as argument;

It produces a new list, where the function has been applied to every element of the input list.
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Data types and pattern matching

Besides defining functions on lists we can declare our own data types:

data Tree a = Leaf a | Node (Tree a) (Tree a)

mapTree :: (a -> b) -> Tree a -> Tree b

mapTree f (Leaf x) = Leaf (f x)

mapTree f (Node l r) = Node (mapTree f l)

(mapTree f r)

We can define functions on trees by pattern matching.
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Higher-order functions

Functions such as map and mapTree are higher-order functions – functions that take functions as
arguments.

In Haskell, functions are first class citizens – they can be bound to variables or passed to other
functions.

This pattern pops up again and again; we’ll see lots of higher-order functions in the lectures on
monads, testing and elsewhere.
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Polymorphism

Functions such as map and mapTree are polymorphic:

incrementList = map (\x -> x + 1)

checkList = map (\x -> x > 3)

The two calls to map pass functions of different types as arguments.

Question: What are the types of these two functions?
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Classes

Polymorphic functions are oblivious to the values on which they operate.

map :: (a -> b) -> [a] -> [b]

The first argument could be any function!

Oftentimes, we want know something about the data which we manipulate.

sort :: [a] -> [a]

To define a sorting function, we need to compare the elements of type a.
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Haskell classes

Haskell classes define an interface:

class Eq a where

(==) :: a -> a -> Bool

We can define instances by providing operations on a specific type:

instance Eq Bool where

True == True = True

False == False = True

_ == _ = False
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Haskell classes

We can define more complicated instances, such as the Eq instance for lists, assuming that we have
already defined an Eq instance for its elements:

instance Eq a => Eq [a] where

[] == [] = True

(x:xs) == (y:ys) = x == y && xs == ys

_ == _ = False

We can now compare lists of booleans, lists of lists of booleans, etc.

Question: What should the Eq instance for pairs be?
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Using classes

When we declare a type signature using a class constraint such as Eq a, we can use the equality
function to compare elements of type a.

For example, the elem function checks if a specific element occurs in a list or not:

elem :: Eq a => a -> [a] -> Bool

elem e [] = False

elem e (x:xs) = e == x || elem e xs

We can use elem on lists of any types, provided there is a corresponding Eq instance.

This is sometimes referred to as ad-hoc polymorphism.
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Packages and modules
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Code in the large

Once you start to organize larger units of code, you typically want to split this over several different
files.

In Haskell, each file contains a separate module.

Let’s start with a quick recap and reviewing the strengths and weaknesses of Haskell’s module
system.
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Goals of the Haskell module system

• Units of separate compilation (not supported by all compilers).

• Namespace management

There is (or rather was until recently) language concept of interfaces or signatures in Haskell, except
for the class system.
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Syntax

module M(D(),f,g) where

import Data.List(unfoldr)

import qualified Data.Map as M

import Control.Monad hiding (mapM)

• Hierarchical modules

• Export list

• Import list, hiding list

• Qualified, unqualified

• Renaming of modules
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Module Main

• If the module header is omitted, the module is automatically named Main.

• Each full Haskell program has to have a module Main that defines a function

main :: IO()
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Hierarchical modules

Module names consist of at least one identifier starting with an uppercase letter, where each
identifier is separated from the rest by a period.

• This former extension to Haskell 98, has been formalized in an addendum to the Haskell 98
Report and is now widely used.

• Implementations expect a module X.Y.Z to be named X/Y/Z.hs or X/Y/Z.lhs

• There are no relative module names – every module is always referred to by a unique name.
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Hierarchical modules

Most of Haskell 98 standard libraries have been extended and placed in the module hierarchy –
moving List to Data.List.

Good practice: Use the hierarchical modules where possible. In most cases, the top-level module
should only refer to other modules in other directories.
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Importing modules

• The import declarations can only appear in the module header, i.e., after the module

declaration but before any other declarations.

• A module can be imported multiple times in different ways.

• If a module is imported qualified, only the qualified names are brought into scope. Otherwise,
the qualified and unqualified names are brought into scope.

• A module can be renamed using as. Then, the qualified names that are brought into scope are
using the new modid.

• Name clashes are reported lazily.
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Prelude

• The module Prelude is imported implicitly as if

import Prelude

has been specified.

• An explicit import declaration for Prelude overrides that behaviour

qualified Prelude

causes all names from Prelude to be available only in their qualified form.
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Module dependencies

• Modules are allowed to be mutually recursive.

• This is not supported well by GHC, and therefore somewhat discouraged.

Question: Why might it be difficult?
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Best practices
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Designing packages

• Use qualified names instead of pre- and suffixes to disambiguate.

• Use renaming of modules to shorten qualified names.

• Avoid hiding

• Recall that you can import the same module multiple times.
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Haskell package management

• Packages are collections of modules that are distributed together.

• Packages are not part of the Haskell standard.

• Packages are versioned and can depend on other packages.

• Packages contain modules. Some of those modules may be hidden.
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Never use TABs

• Haskell uses layout to delimit language constructs.

• Haskell interprets TABs to have 8 spaces.

• Editors often display them with a different width.

• TABs lead to layout-related errors that are difficult to debug.

• Even worse: mixing TABs with spaces to indent a line.

Question: What might go wrong?
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Never use TABs

• Never use TABs.

• Configure your editor to expand TABs to spaces, and/or highlight TABs in source code.
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Alignment

• Use alignment to highlight structure in the code!

• Do not use long lines.

• Do not indent by more than a few spaces.

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x : xs) = f x : map f xs
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Identifier names

• Use informative names for functions.

• Use CamelCase for long names.

• Use short names for function arguments.

• Use similar naming schemes for arguments of similar types.
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Spaces and parentheses

• Generally use exactly as many parentheses as are needed.

• Use extra parentheses in selected places to highlight grouping, particularly in expressions with
many less known infix operators.

• Function application should always be denoted with a space.

• In most cases, infix operators should be surrounded by spaces.
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Blank lines

• Use blank lines to separate top-level functions.

• Also use blank lines for long sequences of let-bindings or long do-blocks, in order to group
logical units.
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Avoid large functions

• Try to keep individual functions small.

• Introduce many functions for small tasks.

• Avoid local functions if they need not be local.

Question: Why?
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Type signatures

• Always give type signatures for top-level functions.

• Give type signatures for more complicated local definitions, too.

• Use type synonyms.

checkTime :: Int -> Int -> Int -> Bool

checkTime :: Hours -> Minutes -> Seconds -> Bool

type Hours = Int

type Minutes = Int

type Seconds = Int
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Type signatures

Or even better, use new types or data types generously:

checkTime :: Hours -> Minutes -> Seconds -> Bool

newtype Hours = Hours Int

newtype Minutes = Minutes Int

newtype Seconds = SecondsInt

Question: what are the relative advantages and disadvantages of newtypes vs type synonyms?
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Comments

• Comment top-level functions.

• Also comment tricky code.

• Write useful comments, avoid redundant comments!

• Use Haddock.
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Booleans

Keep in mind that Booleans are first-class values.

Negative examples:

f x | isSpace x == True = ...

if x then True else False
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Use (data)types!

• Whenever possible, define your own datatypes.

• Use Maybe or user-defined types to capture failure, rather than error or default values.

• Use Maybe or user-defined types to capture optional arguments, rather than passing undefined

or dummy values.

• Don’t use integers for enumeration types.

• By using meaningful names for constructors and types, or by defining type synonyms, you can
make code more self-documenting.
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Use common library functions

• Don’t reinvent the wheel. If you can use a Prelude function or a function from one of the basic
libraries, then do not define it yourself.

• If a function is a simple instance of a higher-order function such as map or foldr, then use
those functions.
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Pattern matching

• When defining functions via pattern matching, make sure you cover all cases.

• Try to use simple cases.

• Do not include unnecessary cases.

• Do not include unreachable cases.
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Avoid partial functions

• Always try to define functions that are total on their domain, otherwise try to refine the domain
type.

• Avoid using functions that are partial.
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Negative example

if isJust x then 1 + fromJust x else 0

Use pattern matching!
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Use let instead of repeating complicated code

Write

let x = foo bar baz in x + x * x

rather than

foo bar baz + foo bar baz * foo bar baz

Questions

• Is there a semantic difference between the two pieces of code?

• Could/should the compiler optimize from the second to the first version internally?
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Type-driven development

• Try to make your functions as generic as possible (why?).

• If you have to write a function of type Foo -> Bar, consider how you can destruct a Foo and
how you can construct a Bar.

• When you tackle an unknown problem, think about its type first.

• You can insert ‘holes’ into your program to help develop your program piece by piece:

myFunction : (Foo -> Foo) -> Bar -> Baz

myFunction f b =

let i = computeResult f _ in

i + _

This is particularly helpful if you choose your types carefully!
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Lunch
For lunch today, we go to the Botanical Gardens.

There will be lunchbags available - feel free to have a walk around, enjoy the weather and get to
know your fellow students.

Next lecture: 14:00 here on Monads and I/O.
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Questions?
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